On the periodic orbits and the integrability of the regularized Hill lunar problem

被引:4
|
作者
Llibre, Jaume [1 ]
Roberto, Luci Any [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Ibilce UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, Brazil
关键词
D O I
10.1063/1.3618280
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical Hill's problem is a simplified version of the restricted three-body problem where the distance of the two massive bodies (say, primary for the largest one and secondary for the smallest one) is made infinity through the use of Hill's variables. The Levi-Civita regularization takes the Hamiltonian of the Hill lunar problem into the form of two uncoupled harmonic oscillators perturbed by the Coriolis force and the Sun action, polynomials of degree 4 and 6, respectively. In this paper, we study periodic orbits of the planar Hill problem using the averaging theory. Moreover, we provide information about the C-1 integrability or non-integrability of the regularized Hill lunar problem. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3618280]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Periodic orbits and integrability of Rocard's system
    Hu, Xinhao
    Tang, Yilei
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 475
  • [32] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [33] Families of periodic orbits in the planar Hill’s four-body problem
    Jaime Burgos-García
    Astrophysics and Space Science, 2016, 361
  • [34] On Hill's periodic lunar orbit
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 937 - 948
  • [35] Periodic Orbits of a Hill-Tether Problem Originated from Collinear Points
    Pelaez, J.
    Lara, M.
    Bombardelli, C.
    Lucas, F. R.
    Sanjurjo-Rivo, M.
    Curreli, D.
    Lorenzini, E. C.
    Scheeres, D. J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (01) : 222 - 233
  • [36] Families of periodic orbits in the planar Hill's four-body problem
    Burgos-Garcia, Jaime
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (11)
  • [37] The cored and logarithm galactic potentials: Periodic orbits and integrability
    Jimenez-Lara, Lidia
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
  • [38] Variational proof of the existence of periodic orbits in the spatial Hill problem and its constrained problems
    Iguchi, Shota
    Kajihara, Yuika
    Shibayama, Mitsuru
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 513 - 524
  • [39] Variational proof of the existence of periodic orbits in the spatial Hill problem and its constrained problems
    Shota Iguchi
    Yuika Kajihara
    Mitsuru Shibayama
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 513 - 524
  • [40] A Photogravitational Hill Problem and Radiation Effects on Hill Stability of Orbits
    V.V. Markellos
    A.E. Roy
    M.J. Velgakis
    S.S. Kanavos
    Astrophysics and Space Science, 2000, 271 : 293 - 301