The multivariate quartic NURBS surfaces

被引:4
|
作者
Li, CJ [1 ]
Wang, RH [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
multivariate quartic NURBS surface; multivariate spline space; bivariate quartic B-spline bases; type-2; triangulation;
D O I
10.1016/j.cam.2003.08.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a kind of multivariate quartic nonuniform rational B-spline (NURBS) surfaces by using bivariate quartic B-spline bases in the multivariate spline space S-4(2)(Delta(mn)((2))), and discuss some properties of this kind of NURBS surfaces with multiple knots on the type-2 triangulation. Compared with the bicubic (rational) Bezier surfaces, the new multivariate NURBS surfaces on the knot vectors of the form U = {0, 0, 0, 0, 1, 1, 1, 1} and V = {0, 0, 0, 0, 1, 1, 1, 1} have similar properties at the four edges of the surfaces. Several examples show that our multivariate B-spline surfaces are better than the corresponding bicubic Bezier surfaces. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 50 条
  • [41] Fast Ray Tracing NURBS Surfaces
    秦开怀
    龚明伦
    童格亮
    JournalofComputerScienceandTechnology, 1996, (01) : 17 - 29
  • [42] Interactive rendering of deforming NURBS surfaces
    Li, FWB
    Lau, RWH
    Green, M
    COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C47 - C56
  • [43] Segre quartic surfaces and minitwistor spaces
    Honda, Nobuhiro
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 672 - 704
  • [44] Extending symmetric determinantal quartic surfaces
    Coughlan, Stephen
    GEOMETRIAE DEDICATA, 2014, 172 (01) : 155 - 177
  • [45] Bounds on partial derivatives of NURBS surfaces
    WANG Guo-jin
    XU Hui-xia
    HU Qian-qian
    Applied Mathematics:A Journal of Chinese Universities, 2017, 32 (03) : 281 - 293
  • [46] Fast Evaluation Algorithm for NURBS Surfaces
    Zhang Xiaopeng
    Tian Jie (Artificial Intelligence Lab
    CADDM, 2000, (02) : 1 - 9
  • [47] Bounds on partial derivatives of NURBS surfaces
    Wang, Guo-jin
    Xu, Hui-xia
    Hu, Qian-qian
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (03) : 281 - 293
  • [48] Brauer groups of diagonal quartic surfaces
    Bright, M
    JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (05) : 544 - 558
  • [49] Birational geometry of rational quartic surfaces
    Mella, Massimiliano
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 141 : 89 - 98
  • [50] On the Brauer group of diagonal quartic surfaces
    Ieronymou, Evis
    Skorobogatov, Alexei N.
    Zarhin, Yuri G.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 659 - 672