The multivariate quartic NURBS surfaces

被引:4
|
作者
Li, CJ [1 ]
Wang, RH [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
multivariate quartic NURBS surface; multivariate spline space; bivariate quartic B-spline bases; type-2; triangulation;
D O I
10.1016/j.cam.2003.08.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a kind of multivariate quartic nonuniform rational B-spline (NURBS) surfaces by using bivariate quartic B-spline bases in the multivariate spline space S-4(2)(Delta(mn)((2))), and discuss some properties of this kind of NURBS surfaces with multiple knots on the type-2 triangulation. Compared with the bicubic (rational) Bezier surfaces, the new multivariate NURBS surfaces on the knot vectors of the form U = {0, 0, 0, 0, 1, 1, 1, 1} and V = {0, 0, 0, 0, 1, 1, 1, 1} have similar properties at the four edges of the surfaces. Several examples show that our multivariate B-spline surfaces are better than the corresponding bicubic Bezier surfaces. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 50 条
  • [1] A kind of multivariate nurbs surfaces
    Wang, RH
    Li, CJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (01) : 137 - 144
  • [2] Watermarking NURBS surfaces
    Pan, ZG
    Sun, SS
    Zhang, MM
    Zhang, DX
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2005, PT 2, 2005, 3768 : 325 - 336
  • [3] Lines on quartic surfaces
    Alex Degtyarev
    Ilia Itenberg
    Ali Sinan Sertöz
    Mathematische Annalen, 2017, 368 : 753 - 809
  • [4] Lines on quartic surfaces
    Degtyarev, Alex
    Itenberg, Ilia
    Sertoz, Ali Sinan
    MATHEMATISCHE ANNALEN, 2017, 368 (1-2) : 753 - 809
  • [5] Supersingular quartic surfaces
    Jang, Junmyeong
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4701 - 4707
  • [6] Representing quadric surfaces using NURBS surfaces
    Kaihuai Qin
    Journal of Computer Science and Technology, 1997, 12 (3) : 210 - 216
  • [7] Representing Quadric Surfaces Using NURBS Surfaces
    秦开怀
    JournalofComputerScienceandTechnology, 1997, (03) : 210 - 216
  • [8] Adaptive tessellation of NURBS surfaces
    Espino, FJ
    Bóo, M
    Amor, M
    Bruguera, JD
    WSCG'2003, VOL 11, NO 1, CONFERENCE PROCEEDINGS, 2003, : 133 - 140
  • [9] Generalized NURBS curves and surfaces
    Wang, Q
    Hua, W
    Li, GQ
    Bao, HJ
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 365 - 368
  • [10] An efficient algorithm for NURBS surfaces
    Zhang, XP
    Tian, J
    Wu, EH
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 805 - 809