On the Cauchy problem for the Cauchy-Riemann operator in Sobolev spaces

被引:0
|
作者
Shlapunov, Alexander [1 ]
机构
[1] Siberian Fed Univ, Dept Math & Comp Sci, Krasnoyarsk 660041, Russia
关键词
complex analysis; partial differential equation; the Cauchy problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded domain in C-n (n >= 1) with a smooth boundary partial derivative D. We describe necessary and sufficient solvability conditions for the ill-posed Cauchy problem for the multi-dimensional Cauchy-Riemann opera, tor partial derivative in Sobolev spaces in D. Moreover, using bases with double orthogonality property we construct Carleman's formulae for functions from the Sobolev space H-s(D), s epsilon N, from their values on Gamma and the values of partial derivative u in D, where Gamma is an open (in the topology of partial derivative D) connected part of partial derivative D.
引用
收藏
页码:333 / 347
页数:15
相关论文
共 50 条
  • [21] TOEPLITZ OPERATORS ON HIGHER CAUCHY-RIEMANN SPACES
    Englis, Miroslav
    Zhang, Genkai
    DOCUMENTA MATHEMATICA, 2017, 22 : 1081 - 1116
  • [22] THE CAUCHY-RIEMANN EQUATION IN SPACES WITH UNIFORM WEIGHTS
    FISCHER, B
    MATHEMATISCHE NACHRICHTEN, 1992, 156 : 45 - 55
  • [23] Construction of a right inverse operator to the discrete Cauchy-Riemann operator
    Hommel, A
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 367 - 374
  • [24] Cauchy-Riemann beams
    Moya-Cessa, H. M.
    Ramos-Prieto, I.
    Sanchez-de-la-Llave, D.
    Ruiz, U.
    Arrizon, V.
    Soto-Eguibar, F.
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [25] Integral Formulas for Slice Cauchy-Riemann Operator and Applications
    Ding, Chao
    Cheng, Xiaoqian
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [26] Universal Series and Fundamental Solutions of the Cauchy-Riemann Operator
    Vangelis Stefanopoulos
    Computational Methods and Function Theory, 2009, 9 (1) : 1 - 12
  • [28] ON THE REMOVAL OF SINGULAR SETS FOR THE TANGENTIAL CAUCHY-RIEMANN OPERATOR
    LUPACCIOLU, G
    ARKIV FOR MATEMATIK, 1990, 28 (01): : 119 - 130
  • [29] On an Analogue of the Riemann-Hilbert Problem for a Non-linear Perturbation of the Cauchy-Riemann Operator
    Cherepanova, Yulia L.
    Shlapunov, Alexander A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (04): : 427 - 431
  • [30] On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space L2 in a domain
    Fedchenko, D. P.
    Shlapunov, A. A.
    SBORNIK MATHEMATICS, 2008, 199 (11-12) : 1715 - 1733