Electrohydrodynamic quenching in polymer melt electrospinning

被引:44
|
作者
Zhmayev, Eduard [1 ]
Cho, Daehwan [1 ]
Joo, Yong Lak [1 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
electrohydrodynamics; electrospinning; heat transfer; jets; polymer melts; quenching (thermal); CONVECTIVE HEAT-TRANSFER; CORONA DISCHARGE; FUNDAMENTAL EQUATIONS; NATURAL-CONVECTION; FORCED-CONVECTION; AIR-FLOW; ENHANCEMENT; PARAMETERS; HUMIDITY; FIELD;
D O I
10.1063/1.3614560
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Infrared thermal measurements on polymer melt jets in electrospinning have revealed rapid quenching by ambient air, an order of magnitude faster than predicted by the classical Kase and Matsuo correlation. This drastic heat transfer enhancement can be linked to electrohydrodynamic (EHD) effects. Analysis of EHD-driven air flow was performed and included into a comprehensive model for polymer melt electrospinning. The analysis was validated by excellent agreement of both predicted jet radius and temperature profiles with experimental results for electrospinning of Nylon-6 (N6), polypropylene (PP), and polylactic acid (PLA) melts. Based on this analysis, several methods that can be used to inhibit or enhance the quenching are described. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3614560]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Nanocomposite nonwoven materials based on polyamide-6 and montmorillonite, prepared by electrospinning of the polymer melt
    Malakhov, S. N.
    Bakirov, A. V.
    Dmitryakov, P. V.
    Chvalun, S. N.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (01) : 165 - 172
  • [32] Electrohydrodynamic instabilities in polymer films
    Schäffer, E
    Thurn-Albrecht, T
    Russell, TP
    Steiner, U
    EUROPHYSICS LETTERS, 2001, 53 (04): : 518 - 524
  • [33] Nanocomposite nonwoven materials based on polyamide-6 and montmorillonite, prepared by electrospinning of the polymer melt
    S. N. Malakhov
    A. V. Bakirov
    P. V. Dmitryakov
    S. N. Chvalun
    Russian Journal of Applied Chemistry, 2016, 89 : 165 - 172
  • [34] Unconfined, melt edge electrospinning from multiple, spontaneous, self-organized polymer jets
    Wang, Qingqing
    Curtis, Colin K.
    Thoppey, Nagarajan Muthuraman
    Bochinski, Jason R.
    Gorga, Russell E.
    Clarke, Laura I.
    MATERIALS RESEARCH EXPRESS, 2014, 1 (04):
  • [35] Vascular Scaffold for Guides Endothelial Cell Alignment by Electrohydrodynamic and Electrospinning
    Liu, Yuanyuan
    Wang, Yu
    Zhang, Yi
    Wang, Bin
    Pu, Huayan
    Zhong, Songyi
    Xie, Shaorong
    Peng, Yan
    Luo, Jun
    Yue, Tao
    Liu, Na
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2019, 9 (03) : 298 - 303
  • [36] Melt Electrospinning in a Parallel Electric Field
    Liu, Yong
    Li, Xiuhong
    Ramakrishna, Seeram
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2014, 52 (14) : 946 - 952
  • [37] Direct Writing By Way of Melt Electrospinning
    Brown, Toby D.
    Dalton, Paul D.
    Hutmacher, Dietmar W.
    ADVANCED MATERIALS, 2011, 23 (47) : 5651 - +
  • [38] Melt Electrospinning Writing of Magnetic Microrobots
    Su, Yingchun
    Qiu, Tian
    Song, Wen
    Han, Xiaojun
    Sun, Mengmeng
    Wang, Zhao
    Xie, Hui
    Dong, Mingdong
    Chen, Menglin
    ADVANCED SCIENCE, 2021, 8 (03)
  • [39] Melt-electrospinning of Polyphenylene Sulfide
    An, Ying
    Yu, Shaoyang
    Li, Shoumeng
    Wang, Xun
    Yang, Weimin
    Yousefzadeh, Maryam
    Bubakir, Mahmoud M.
    Li, Haoyi
    FIBERS AND POLYMERS, 2018, 19 (12) : 2507 - 2513
  • [40] Melt electrospinning in a direct writing mode
    Brown, T. D.
    Dalton, P. D.
    Hutmacher, D. W.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 383 - 384