Fractal characterization of hyperspectral imagery

被引:1
|
作者
Qiu, HL [1 ]
Lam, NSN
Quattrochi, DA
Gamon, JA
机构
[1] Calif State Univ Los Angeles, Dept Geog & Urban Anal, Los Angeles, CA 90032 USA
[2] Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA 70803 USA
[3] NASA, Global Hydrol & Climate Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[4] Calif State Univ Los Angeles, Dept Biol & Microbiol, Los Angeles, CA 90032 USA
来源
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING | 1999年 / 65卷 / 01期
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Two AVIRIS hyperspectral images selected from the Los Angeles area, one representing urban and the other rural, were used to examine their spatial complexity across their entire spectrum of the remote sensing data. Using the ICAMS (Image Characterization And Modeling System) software, we computed the fractal dimension values using the isarithm and triangular prism methods for all 224 bands in the two AVIRIS scenes. The resultant fractal dimensions reflect changes in image complexity across the spectral range of the hyperspectral images. Both the isarithm and triangular prism methods detect unusually high D values on the spectral bands that fall within the atmospheric absorption and scattering zones where signal-to-noise ratios are low. Fractal dimensions for the urban area resulted in higher values than for the rural landscape, and the differences between the resulting D values are more distinct in the visible bands. The triangular prism method is sensitive to a few random speckles in the images, leading to a lower dimensionality. On the contrary the isarithm method will ignore the speckles and focus on the major variation dominating the surface, thus resulting in a higher dimension. It is seen where the fractal curves plotted for the entire bandwidth range of the hyperspectral images could be used to distinguish landscape types as well as for screening noisy bands.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [41] Spaceborne hyperspectral imagery sharpened with spaceborne multispectral imagery
    Vrabel, J
    Eckstein, BA
    Mullen, CP
    Kunze, B
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 425 - 432
  • [42] Linking goniometer measurements to hyperspectral and multisensor imagery for retrieval of beach properties and coastal characterization
    Bachmann, Charles M.
    Gray, Deric
    Abelev, Andrei
    Philpot, William
    Montes, Marcos J.
    Fusina, Robert
    Musser, Joseph
    Li, Rong-Rong
    Vermillion, Michael
    Smith, Geoffrey
    Korwan, Daniel
    Snow, Charlotte
    Miller, W. David
    Gardner, Joan
    Sletten, Mark
    Georgiev, Georgi
    Truitt, Barry
    Killmon, Marcus
    Sellars, Jon
    Woolard, Jason
    Parrish, Christopher
    Schwarzschild, Art
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [43] OBJECT IDENTIFICATION AND CHARACTERIZATION WITH HYPERSPECTRAL IMAGERY TO IDENTIFY STRUCTURE AND FUNCTION OF NATURA 2000 HABITATS
    Mucher, C. A.
    Kooistra, L.
    Vermeulen, M.
    Haest, B.
    Spanhove, T.
    Delalieux, S.
    VandenBorre, J.
    Schmidt, A.
    GEOBIA 2010: GEOGRAPHIC OBJECT-BASED IMAGE ANALYSIS, 2010, 38-4-C7
  • [44] Characterization of Forest Crops with a Range of Nutrient and Water Treatments Using AISA Hyperspectral Imagery
    Gong, Binglei
    Im, Jungho
    Jensen, John R.
    Coleman, Mark
    Rhee, Jinyoung
    Nelson, Eric
    GISCIENCE & REMOTE SENSING, 2012, 49 (04) : 463 - 491
  • [45] Learning Sparse Codes for Hyperspectral Imagery
    Charles, Adam S.
    Olshausen, Bruno A.
    Rozell, Christopher J.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (05) : 963 - 978
  • [46] Anomaly Discrimination and Classification for Hyperspectral Imagery
    Lee, Li-Chien
    Paylor, Drew
    Chang, Chein-, I
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [47] Feature aided tracking with hyperspectral imagery
    Blackburn, Joshua
    Mendenhall, Michael
    Rice, Andrew
    Shelnutt, Paul
    Soliman, Neil
    Vasquez, Juan
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2007, 2007, 6699
  • [48] Constrained band selection for hyperspectral imagery
    Chang, Chein-I
    Wang, Su
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06): : 1575 - 1585
  • [49] Automated intelligent distillation of hyperspectral imagery
    Huguenin, RL
    Bouchard, MS
    Wang, MH
    Karaska, MA
    IMAGING SPECTROMETRY V, 1999, 3753 : 80 - 85
  • [50] A Virtual Dimensionality Method for Hyperspectral Imagery
    Baran, Daniela
    Apostolescu, Nicolae
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 460 - 465