Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodium-Ion Batteries

被引:53
|
作者
Ji, Haocheng [1 ]
Zhai, Jingjun [1 ]
Chen, Guojie [1 ]
Qiu, Xiao [2 ]
Fang, Hui [1 ]
Zhang, Taolve [1 ]
Huang, Zhongyuan [1 ]
Zhao, Wenguang [1 ]
Wang, Zhenhui [1 ]
Chu, Mihai [1 ]
Wang, Rui [1 ]
Wang, Chaoqi [1 ]
Li, Rui [1 ]
Zeng, Wen [3 ]
Wang, Xinwei [1 ]
Xiao, Yinguo [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong 999077, Peoples R China
[3] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
atomic layer deposition; sodium-ion batteries; biphasic; cathodes; failure; surface engineering; LONG CYCLE LIFE; NA-ION; OXIDE CATHODE; DEPOSITION; DISSOLUTION; STABILITY; ELECTRODE; LIMN2O4; DENSITY;
D O I
10.1002/adfm.202109319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the process of upgrading energy storage structures, sodium-ion batteries (SIBs) are regarded as the most promising candidates for large-scale grid storage systems. However, the difficulty in further improving their specific capacity and lifespan has become a major obstacle to promoting extensive application. Herein, by optimizing synthesis conditions, a biphasic-Na2/3Ni1/3Mn2/3O2 cathode that exhibits an ultrahigh capacity of approximate to 200 mAh g(-1) without the involvement of anion redox reactions is successfully synthesized. Nevertheless, there is significant electrochemical performance degradation because of failure at the cathode-electrolyte interface as revealed by comprehensive analyses. Further in-depth research proves that the surface side reactions that occur at high operating voltages and the transition metal dissolution that occurs in low voltage are the root causes of electrode surface failure. Therefore, the metal oxide atomic layer deposition (ALD) protective layer is deliberately chosen to suppress such failures. The coating effectively blocks corrosion of the cathode material by the electrolyte and successfully anchors the transition metal ions on the particle surface. As a result, the cycle stability and rate performance of the electrode are improved considerably. This surface engineering strategy could provide concepts with broad applicability for suppressing the failure of sodium layered cathodes.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] High entropy biphasic oxide cathode materials for sodium-ion batteries to mitigate performance degradation
    Wang, Yusong
    Wang, Yingshuai
    Liu, Lei
    Wang, Ziye
    Ding, Xiangyu
    Zhou, Qingbo
    Huang, Shaowen
    Zhang, Hexiao
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2025, 9 (03): : 794 - 803
  • [12] High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries
    Wang, Bing
    Ma, Jun
    Wang, Kejian
    Wang, Dekai
    Xu, Gaojie
    Wang, Xiaogang
    Hu, Zhiwei
    Pao, Chih-Wen
    Chen, Jeng-Lung
    Du, Li
    Du, Xiaofan
    Cui, Guanglei
    ADVANCED ENERGY MATERIALS, 2024, 14 (23)
  • [13] Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium-Ion Batteries
    Voronina, Natalia
    Kim, Hee Jae
    Konarov, Aishuak
    Yaqoob, Najma
    Lee, Kug-Seung
    Kaghazchi, Payam
    Guillon, Olivier
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [14] Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries
    Li, Jiayang
    Hu, Haiyan
    Wang, Jiazhao
    Xiao, Yao
    CARBON NEUTRALIZATION, 2022, 1 (02): : 96 - 116
  • [15] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Luo, Wen
    Gaumet, Jean-Jacques
    Mai, Liqiang
    MRS COMMUNICATIONS, 2017, 7 (02) : 152 - 165
  • [16] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Wen Luo
    Jean-Jacques Gaumet
    Liqiang Mai
    MRS Communications, 2017, 7 : 152 - 165
  • [17] Core-Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Chen, Cheng
    Han, Zhen
    Chen, Shuangqiang
    Qi, Shuo
    Lan, Xinyue
    Zhang, Chunchen
    Chen, Lin
    Wang, Peng
    Wei, Weifeng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7144 - 7152
  • [18] A Rational Biphasic Tailoring Strategy Enabling High-Performance Layered Cathodes for Sodium-Ion Batteries
    Cheng, Zhiwei
    Fan, Xin-Yu
    Yu, Lianzheng
    Hua, Weibo
    Guo, Yu-Jie
    Feng, Yi-Hu
    Ji, Fang-Di
    Liu, Mengting
    Yin, Ya-Xia
    Han, Xiaogang
    Guo, Yu-Guo
    Wang, Peng-Fei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (19)
  • [19] An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries
    Luo, Wei
    Allen, Marshall
    Raju, Vadivukarasi
    Ji, Xiulei
    ADVANCED ENERGY MATERIALS, 2014, 4 (15)
  • [20] High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries
    Niu, Yu-Bin
    Guo, Yu-Jie
    Yin, Ya-Xia
    Zhang, Si-Yuan
    Wang, Tao
    Wang, Ping
    Xin, Sen
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2020, 32 (33)