Superconvergence of new mixed finite element spaces

被引:1
|
作者
Hyon, YunKyong [1 ]
Kwak, Do Young [2 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
关键词
Mixed finite element method; Superconvergence; Optimal order; Post-processing; QUADRILATERAL GRIDS; ELLIPTIC PROBLEMS; VOLUME METHODS;
D O I
10.1016/j.cam.2011.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove some superconvergence of a new family of mixed finite element spaces of higher order which we introduced in [ETNA, Vol. 37, pp. 189-201, 2010]. Among all the mixed finite element spaces having an optimal order of convergence on quadrilateral grids, this space has the smallest unknowns. However, the scalar variable is only suboptimal in general; thus we have employed a post-processing technique for the scalar variable. As a byproduct, we have obtained a superconvergence on a rectangular grid. The superconvergence of a velocity variable naturally holds and can be shown by a minor modification of existing theory, but that of a scalar variable requires a new technique, especially for k = 1. Numerical experiments are provided to support the theory. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4265 / 4271
页数:7
相关论文
共 50 条
  • [21] New decomposition of shape functions spaces of mixed finite element methods
    Bendali, A
    Raynaud, N
    Thomas, JM
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 33 - 38
  • [22] A new finite element gradient recovery method: Superconvergence property
    Zhang, ZM
    Naga, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04): : 1192 - 1213
  • [23] Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data
    Hongsen Chen
    Richard Ewing
    Raytcho Lazarov
    Numerische Mathematik, 1998, 78 : 495 - 521
  • [24] Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data
    Chen, HS
    Ewing, R
    Lazarov, R
    NUMERISCHE MATHEMATIK, 1998, 78 (04) : 495 - 521
  • [26] The superconvergence analysis of the nonconforming mixed finite element method for quasilinear viscoelasticity equations
    Lv, Jinfeng
    Hu, Guijiang
    Kong, Liang
    Ren, Yunli
    ICIC Express Letters, 2015, 9 (03): : 855 - 860
  • [27] Analysis of a non-standard mixed finite element method with applications to superconvergence
    Jan H. Brandts
    Applications of Mathematics, 2009, 54 : 225 - 235
  • [28] SUPERCONVERGENCE OF THE VELOCITY ALONG THE GAUSS LINES IN MIXED FINITE-ELEMENT METHODS
    EWING, RE
    LAZAROV, RD
    WANG, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1015 - 1029
  • [29] Superconvergence of triangular mixed finite element methods for nonlinear optimal control problems
    Lu, Zuliang
    Zhang, Shuhua
    SCIENCEASIA, 2016, 42 (03): : 213 - 221
  • [30] Superconvergence of Rectangular Mixed Finite Element Methods for Constrained Optimal Control Problem
    Chen, Yanping
    Dai, Li
    Lu, Zuliang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2010, 2 (01) : 56 - 75