Siegel superparticle, higher-order fermionic constraints, and path integrals

被引:6
|
作者
Galajinsky, AV [1 ]
Gitman, DM [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
关键词
canonical quantization; path integral; superparticle;
D O I
10.1016/S0550-3213(98)00584-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a Siegel superparticle moving in R-4\4 flat superspace. Canonical quantization is accomplished yielding the massless Wess-Zumino model as an effective field theory. The path integral representation for the corresponding superpropagator is constructed and proven to involve the Siegel action in a gauge-fixed form. It is shown that higher-order fermionic constraints intrinsic in the theory, though being a consequence of others in d = 4, make a crucial contribution to the path integral. (C) 1999 Published by Elsevier Science B.V.
引用
收藏
页码:435 / 453
页数:19
相关论文
共 50 条
  • [21] Path integrals over Fermionic fields
    Creutz, M
    MULTISCALE COMPUTATIONAL METHODS IN CHEMISTRY AND PHYSICS, 2001, 177 : 349 - 350
  • [22] Fermionic path integrals and local anomalies
    Roepstorff, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2003, 237 (01): : 90 - 98
  • [23] PERTURBATIVE HAMILTONIAN CONSTRAINTS FOR HIGHER-ORDER THEORIES
    Martinez, S. A.
    Montemayor, R.
    Urrutia, L. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (26): : 4661 - 4686
  • [24] Higher-order discrete variational problems with constraints
    Colombo, Leonardo
    Martin de Diego, David
    Zuccalli, Marcela
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [25] Intermediate Systems and Higher-Order Differential Constraints
    Kaptsov, Oleg V.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (05): : 550 - 560
  • [26] HIGHER-ORDER DERIVATIVE CONSTRAINTS IN QUALITATIVE SIMULATION
    KUIPERS, BJ
    CHIU, C
    MOLLE, DTD
    THROOP, DR
    ARTIFICIAL INTELLIGENCE, 1991, 51 (1-3) : 343 - 379
  • [27] Higher-order symmetric duality with cone constraints
    Gulati, T. R.
    Gupta, S. K.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 776 - 781
  • [28] A higher-order logic programming language with constraints
    Leach, J
    Nieva, S
    FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 2001, 2024 : 108 - 122
  • [29] The research of "Higher-Order Derivative Constraints" theory
    Huang, YL
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2715 - 2719
  • [30] Higher-order path orders based on computability
    Kusakari, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (02) : 352 - 359