Spectral properties of self-similar measures with product-form digit sets

被引:5
|
作者
Liu, Jing-Cheng [1 ]
Peng, Rong-Gui [1 ]
Wu, Hai-Hua [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stast, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Iterated function system; Self-affine measure; Spectral measure; Translational tile; AFFINE TILES; FUGLEDES CONJECTURE;
D O I
10.1016/j.jmaa.2018.12.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the spectral properties of self-similar measures mu(R,D) generated by the integer R = N-q and the product-form digit set D = {0, 1, . . . ,N - 1}circle plus N-P {0, 1, . . . , N - 1}, where the integers q, p >= 1 and N >= 2. We show that mu(R,D) is a spectral measure if and only if q inverted iota p. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 50 条