End-to-end Relation Extraction using Neural Networks and Markov Logic Networks

被引:0
|
作者
Pawar, Sachin [1 ,2 ]
Bhattacharyya, Pushpak [2 ]
Palshikar, Girish K. [1 ]
机构
[1] Tata Consultancy Serv, TCS Res, Pune, Maharashtra, India
[2] Indian Inst Technol, Mumbai, Maharashtra, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-end relation extraction refers to identifying boundaries of entity mentions, entity types of these mentions and appropriate semantic relation for each pair of mentions. Traditionally, separate predictive models were trained for each of these tasks and were used in a "pipeline" fashion where output of one model is fed as input to another. But it was observed that addressing some of these tasks jointly results in better performance. We propose a single, joint neural network based model to carry out all the three tasks of boundary identification, entity type classification and relation type classification. This model is referred to as "All Word Pairs" model (AWP-NN) as it assigns an appropriate label to each word pair in a given sentence for performing end-to-end relation extraction. We also propose to refine output of the AWP-NN model by using inference in Markov Logic Networks (MLN) so that additional domain knowledge can be effectively incorporated. We demonstrate effectiveness of our approach by achieving better end-to-end relation extraction performance than all 4 previous joint modelling approaches, on the standard dataset of ACE 2004.
引用
收藏
页码:818 / 827
页数:10
相关论文
共 50 条
  • [21] End-to-End Congestion Control in Wireless Mesh Networks using a Neural Network
    Al Islam, A. B. M. Alim
    Raghunathan, Vijay
    2011 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2011, : 677 - 682
  • [22] DeepLanes: End-To-End Lane Position Estimation using Deep Neural Networks
    Gurghian, Alexandru
    Koduri, Tejaswi
    Bailur, Smita V.
    Carey, Kyle J.
    Murali, Vidya N.
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 38 - 45
  • [23] Separation of Nonlinearly Mixed Sources Using End-to-End Deep Neural Networks
    Zamani, Hojatollah
    Razavikia, Saeed
    Otroshi-Shahreza, Hatef
    Amini, Arash
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 101 - 105
  • [24] End-to-End Visuomotor Learning of Drawing Sequences using Recurrent Neural Networks
    Sasaki, Kazuma
    Ogata, Tetsuya
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [25] On-FPGA Spiking Neural Networks for End-to-End Neural Decoding
    Leone, Gianluca
    Raffo, Luigi
    Meloni, Paolo
    IEEE ACCESS, 2023, 11 : 41387 - 41399
  • [26] Improved Relation Networks for End-to-End Speaker Verification and Identification
    Chaubey, Ashutosh
    Sinha, Sparsh
    Ghose, Susmita
    INTERSPEECH 2022, 2022, : 5085 - 5089
  • [27] End-To-End Memory Networks
    Sukhbaatar, Sainbayar
    Szlam, Arthur
    Weston, Jason
    Fergus, Rob
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [28] DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks
    Chen, Huili
    Fu, Cheng
    Rouhani, Bita Darvish
    Zhao, Jishen
    Koushanfar, Farinaz
    PROCEEDINGS OF THE 2019 46TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '19), 2019, : 487 - 498
  • [29] An End-to-End Compression Framework Based on Convolutional Neural Networks
    Jiang, Feng
    Tao, Wen
    Liu, Shaohui
    Ren, Jie
    Guo, Xun
    Zhao, Debin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 3007 - 3018
  • [30] Segmental Recurrent Neural Networks for End-to-end Speech Recognition
    Lu, Liang
    Kong, Lingpeng
    Dyer, Chris
    Smith, Noah A.
    Renals, Steve
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 385 - 389