Correlation for self-diffusion coefficients of H2, CH4, CO, O2 and CO2 in supercritical water from molecular dynamics simulation

被引:57
|
作者
Zhao, Xiao [1 ]
Jin, Hui [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn SKLMF, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-diffusion coefficient; Molecular dynamics; Supercritical water; Empirical equation; TEMPERATURE-DEPENDENCE; WIDE-RANGE; GASIFICATION; HYDROGEN; BIOMASS; VISCOSITIES; PREDICTION; OXIDATION; DENSITY; SYSTEM;
D O I
10.1016/j.applthermaleng.2020.114941
中图分类号
O414.1 [热力学];
学科分类号
摘要
Molecular dynamics simulations were employed for the calculation of self-diffusion coefficients of H-2, CH4, CO, O-2 and CO2 in supercritical water over a wide range of temperature (673-973 K) and pressure (250-280 atm). Based on our results, H-2 always diffuses the fastest while CO2 diffuses the slowest, and self-diffusion coefficients of CH4, CO and O-2 are between H-2 and CO2. Temperature, density and viscosity of supercritical water are the main factors determining self-diffusion coefficient. Self-diffusion coefficient has an Arrhenius behavior in a certain temperature range. The term Dp is independent of temperature and ln(D eta/T) has a linear relation with temperature. A new empirical equation is proposed as D = A(0)F(sow) = A0 T-e/rho(a)eta(b) to predict self-diffusion coefficient in supercritical water. The influence of the solute gas and solution supercritical water is divided into A(0) and F-sow respectively. A(0) and exponential indexes of a, b, c are fitted from our calculation results. For all 75 data points, the average relative error between the results from simulation and this equation is only 4.40%.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Experimental study on the intrinsic instabilities of spherically expanding CH4/H2/CO2/O2 flames
    Zhang, Jianlei
    Zheng, Ligang
    Wang, Jian
    Pan, Rongkun
    Jia, Hailin
    Miao, Yuxin
    Shi, Zhanwang
    Wang, Xi
    FUEL, 2023, 332
  • [32] Adsorption and Diffusion Characteristics of CO2 and CH4 in Anthracite Pores: Molecular Dynamics Simulation
    Gao, Yufei
    Wang, Yaqing
    Chen, Xiaolong
    PROCESSES, 2024, 12 (06)
  • [33] The Competitive Adsorption Behavior of CO2/CH4 and CH4/H2S/CO2 in in Illite Nanopores: Insights from Molecular Simulation
    Ning, Shaofeng
    Bao, Junyao
    Cui, Jingkai
    Zhan, Shiyuan
    Wang, Xiaoguang
    COMPUTATIONAL AND EXPERIMENTAL SIMULATIONS IN ENGINEERING, ICCES 2024-VOL 2, 2025, 173 : 665 - 685
  • [34] Linking Soil O2, CO2, and CH4 Concentrations in a Wetland Soil: Implications for CO2 and CH4 Fluxes
    Elberling, Bo
    Askaer, Louise
    Jorgensen, Christian J.
    Joensen, Hans P.
    Kuhl, Michael
    Glud, Ronnie N.
    Lauritsen, Frants R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (08) : 3393 - 3399
  • [35] CONCENTRATIONS OF CH4, CO, CO2, H2, H2O AND N2O IN UPPER STRATOSPHERE
    EHHALT, DH
    HEIDT, LE
    LUEB, RH
    MARTELL, EA
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1975, 32 (01) : 163 - 169
  • [36] Accurate correlations for the self-diffusion coefficients of CO2, CH4, C2H4, H2O, and D2O over wide ranges of temperature and pressure
    Liu, HQ
    Macedo, EA
    JOURNAL OF SUPERCRITICAL FLUIDS, 1995, 8 (04): : 310 - 317
  • [38] Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites
    Shi Q.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (10): : 1531 - 1539
  • [39] CO2, H2, AND CH4 PRODUCTION IN RICE RHIZOSPHERE
    KIMURA, M
    MURAKAMI, H
    WADA, H
    SOIL SCIENCE AND PLANT NUTRITION, 1991, 37 (01) : 55 - 60
  • [40] Thermodynamic Calculations of the Critical Points of the H2–CO2–CH4–CO–H2O System
    Siyuan Cheng
    Weigang Ma
    Naoya Sakoda
    Xing Zhang
    International Journal of Thermophysics, 2020, 41