We study two nonlinear methods for statistical linear inverse problems when the operator is not known. The two constructions combine Galerkin regularization and wavelet thresholding. Their performances depend on the underlying structure of the operator, quantified by an index of sparsity. We prove their rate-optimality and adaptivity properties over Besov classes.
机构:
Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, JapanNatl Inst Environm Studies, Tsukuba, Ibaraki, Japan
Niwa, Yosuke
Fujii, Yosuke
论文数: 0引用数: 0
h-index: 0
机构:
Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan
Res Org Informat & Syst, Inst Stat Math, Tokyo, JapanNatl Inst Environm Studies, Tsukuba, Ibaraki, Japan
机构:
ENSAE ParisTech CREST, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, FranceENSAE ParisTech CREST, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France