Control of observable chaotic dynamical systems using nonlinear approximations

被引:1
|
作者
Hill, DL [1 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Perth, WA 6009, Australia
来源
关键词
control of chaos; nonlinear systems; stable manifold;
D O I
10.1142/S0218127403008430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A technique of using nonlinear approximations to control chaotic dynamical systems is extended so it can be used to control such systems when only data generated can be observed.
引用
收藏
页码:3053 / 3062
页数:10
相关论文
共 50 条
  • [21] Using SVM to model and control nonlinear dynamical systems
    Zhang, Haoran
    Wang, Xiaodong
    Zhang, Changjiang
    Wang, Jin
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2912 - 2915
  • [22] Control of nonlinear dynamical systems using genetic algorithms
    AlDuwaish, HN
    Bettayeb, M
    PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1997, : 421 - 424
  • [23] Simplified Numerical Methods used for the Approximations of Chaotic Solutions of Dynamical Systems
    Constantinescu, Radu-Lucian
    Roman, Monica
    Selisteanu, Dan
    2017 18TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2017, : 560 - 564
  • [24] LIMIT-THEOREMS AND MARKOV APPROXIMATIONS FOR CHAOTIC DYNAMICAL-SYSTEMS
    CHERNOV, NI
    PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (03) : 321 - 362
  • [25] Reinforcement Learning of Chaotic Systems Control in Partially Observable Environments
    Weissenbacher, Max
    Borovykh, Anastasia
    Rigas, Georgios
    FLOW TURBULENCE AND COMBUSTION, 2025,
  • [26] Comments on: "Control of chaotic dynamical systems using support vector machines"
    Liu, HP
    Sun, FC
    Sun, ZQ
    PHYSICS LETTERS A, 2005, 342 (03) : 278 - 279
  • [27] Synchronization of Rossler and Chen chaotic dynamical systems using active control
    Agiza, HN
    Yassen, MT
    PHYSICS LETTERS A, 2001, 278 (04) : 191 - 197
  • [28] Adaptive control of chaotic dynamical systems using invariant manifold approach
    Tian, YP
    Yu, XH
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (10): : 1537 - 1542
  • [29] CONTROL TECHNIQUES FOR CHAOTIC DYNAMICAL-SYSTEMS
    GENESIO, R
    TESI, A
    KYBERNETIKA, 1993, 29 (05) : 469 - 478
  • [30] Introduction: Control and synchronization in chaotic dynamical systems
    Kurths, J
    Boccaletti, S
    Grebogi, C
    Lai, YC
    CHAOS, 2003, 13 (01) : 126 - 127