High redox performance of Y0.5Ba0.5CoO3-δ for thermochemical oxygen production and separation

被引:15
|
作者
Ezbiri, M. [1 ]
Reinhart, A. [1 ]
Huber, B. [1 ]
Allen, K. M. [2 ]
Steinfeld, A. [1 ]
Bulfin, B. [1 ]
Michalsky, R. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Paul Scherrer Inst, Solar Technol Lab, CH-5232 Villigen, Switzerland
基金
欧洲研究理事会;
关键词
AIR SEPARATION; DESIGN PRINCIPLES; A-SITE; PEROVSKITES; CYCLE; SELECTION; OXIDES;
D O I
10.1039/c9re00430k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The efficient production and separation of oxygen is essential for numerous energy-intensive industrial applications in the fuel and mineral processing sectors. A thermochemical redox cycle is considered for separating oxygen from atmospheric air and other gas mixtures using solar or waste process heat. Based on electronic structure (DFT) computations Y0.5Ba0.5CoO3-delta is selected as a redox material, which surpasses the redox performance of state-of-the-art Cu2O. The thermochemical oxygen production is experimentally demonstrated by applying a temperature/pressure swing between 573 K at 0.2 bar O-2 and 873 K at 1 bar O-2. An energy balance shows the feasibility of using process waste heat from the solar thermochemical CO2/H2O splitting cycle and the potential to compete vis-a-vis with cryogenic distillation. Exploratory runs with a packed-bed reactor indicate the potential of both thermochemical oxygen production and separation for scale-up and industrial implementation.
引用
收藏
页码:685 / 695
页数:11
相关论文
共 50 条
  • [21] Ba0.5Sr0.5Co0.8Fe0.2O3-δ for Oxygen Separation Membranes
    Mueller, P.
    Dieterle, L.
    Mueller, E.
    Stoermer, H.
    Gerthsen, D.
    Niedrig, C.
    Taufall, S.
    Wagner, S. F.
    Ivers-Tiffee, E.
    IONIC AND MIXED CONDUCTING CERAMICS 7, 2010, 28 (11): : 309 - 314
  • [22] Glassy ferromagnetism and phase separation in Pr0.5Ca0.5CoO3
    Marysko, M.
    Jirak, Z.
    Hejtmanek, J.
    Knizek, K.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [23] Defect-Induced Properties and Thermodynamics of La0.5Ba0.5CoO3-δ
    Malyshkin, Dmitry A.
    Sereda, Vladimir V.
    Sednev-Lugovets, Anton L.
    Ivanov, Ivan L.
    Tsvetkov, Dmitry S.
    Zuev, Andrey Yu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
  • [24] La0.5Ba0.5CoO3中的Pr掺杂效应
    张汝贞
    王成建
    刘宜华
    季刚
    栾开政
    梅良模
    功能材料与器件学报, 2002, (03) : 223 - 227
  • [25] Oxygen vacancy of RE0.5Sr0.5CoO3-δ Thin films
    Ding, Tiezhu
    Zhu, Chengjun
    Qin, Yanli
    Wang, Yanlai
    Chao, Luomeng
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 1668 - 1671
  • [26] THE OXYGEN EVOLUTION ON LA0.5BA0.5COO3 - THEORETICAL IMPEDANCE BEHAVIOR FOR A MULTISTEP MECHANISM INVOLVING 2 ADSORBATES
    KOBUSSEN, AGC
    BROERS, GHJ
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1981, 126 (1-3) : 221 - 240
  • [27] Study on the spectral properties of nanocrystals Dy0.5Sr0.5CoO3-Y
    Wei, K
    Shi, Y
    Wu, FY
    He, LY
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2001, 21 (02) : 160 - 162
  • [28] Nanostructured La0.5Ba0.5CoO3 as cathode for solid oxide fuel cells
    Mejia Gomez, Augusto E.
    Lamas, Diego G.
    Gabriela Leyva, Ana
    Sacanell, Joaquin
    CERAMICS INTERNATIONAL, 2019, 45 (11) : 14182 - 14187
  • [29] Study on the spectral properties of nanocrystals Dy0.5Sr0.5CoO3-Y
    Wei, K.
    Shi, Y.
    Wu, F.Y.
    He, L.Y.
    Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2001, 21 (02):
  • [30] The low-temperature phase separation in Pr0.5Ca0.5CoO3
    Chichev, A.
    Hejtmanek, J.
    Jirak, Z.
    Knizek, K.
    Marysko, M.
    Dlouha, M.
    Vratislav, S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 316 (02) : E728 - E730