Recursive partitioning for tumor classification with gene expression microarray data

被引:149
|
作者
Zhang, HP [1 ]
Yu, CY
Singer, B
Xiong, MM
机构
[1] Yale Univ, Sch Med, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA
[2] Princeton Univ, Off Populat Res, Princeton, NJ 08544 USA
[3] Univ Texas, Hlth Sci Ctr, Ctr Human Genet, Houston, TX 77225 USA
关键词
D O I
10.1073/pnas.111153698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise classification of tumors is critically important for cancer diagnosis and treatment. It is also a scientifically challenging task. Recently, efforts have been made to use gene expression profiles to improve the precision of classification, with limited success. Using a published data set for purposes of comparison, we introduce a methodology based on classification trees and demonstrate that it is significantly more accurate for discriminating among distinct colon cancer tissues than other statistical approaches used heretofore. In addition, competing classification trees are displayed, which suggest that different genes may coregulate colon cancers.
引用
收藏
页码:6730 / 6735
页数:6
相关论文
共 50 条
  • [41] Tumor classification ranking from microarray data
    Hewett, Rattikorn
    Kijsanayothin, Phongphun
    BMC GENOMICS, 2008, 9 (Suppl 2)
  • [42] Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification
    Ke, Lin
    Li, Min
    Wang, Lei
    Deng, Shaobo
    Ye, Jun
    Yu, Xiang
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 455 - 472
  • [43] A multi-objective heuristic algorithm for gene expression microarray data classification
    Lv, Jia
    Peng, Qinke
    Chen, Xiao
    Sun, Zhi
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 13 - 19
  • [44] Deep learning techniques for cancer classification using microarray gene expression data
    Gupta, Surbhi
    Gupta, Manoj K.
    Shabaz, Mohammad
    Sharma, Ashutosh
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [45] Deep Learning Enabled Microarray Gene Expression Classification for Data Science Applications
    Malibari, Areej A.
    Alshehri, Reem M.
    Al-Wesabi, Fahd N.
    Negm, Noha
    Al Duhayyim, Mesfer
    Hilal, Anwer Mustafa
    Yaseen, Ishfaq
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4277 - 4290
  • [46] Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification
    Lin Ke
    Min Li
    Lei Wang
    Shaobo Deng
    Jun Ye
    Xiang Yu
    Pattern Analysis and Applications, 2023, 26 : 455 - 472
  • [47] Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning
    Guillen, Pablo
    Ebalunode, Jerry
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1403 - 1405
  • [48] Combination of Feature Selection Methods for the Effective Classification of Microarray Gene Expression Data
    Sheela, T.
    Rangarajan, Lalitha
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 137 - 145
  • [49] Application of the Bayesian MMSE estimator for classification error to gene expression microarray data
    Dalton, Lori A.
    Dougherty, Edward R.
    BIOINFORMATICS, 2011, 27 (13) : 1822 - 1831
  • [50] A dynamic method for preparing microarray gene expression data in disease classification system
    Hemant B. Mahajan
    K. T. V. Reddy
    Journal of Ambient Intelligence and Humanized Computing, 2025, 16 (2) : 391 - 403