Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses

被引:44
|
作者
Karanja, Bernard Kinuthia [1 ]
Fan, Lianxue [1 ]
Xu, Liang [1 ]
Wang, Yan [1 ]
Zhu, Xianwen [2 ]
Tang, Mingjia [1 ]
Wang, Ronghua [1 ]
Zhang, Fei [1 ]
Muleke, Everlyne M'mbone [1 ]
Liu, Liwang [1 ]
机构
[1] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Key Lab Hort Crop Biol & Genet Improvement Eas Ch, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] North Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
关键词
Raphanus sativus; WRKY transcription factor; Abiotic stress; RT-qPCR; TRANSCRIPTION FACTOR FAMILY; EXPRESSION ANALYSIS; DNA-BINDING; IDENTIFICATION; TOLERANCE; MICRORNAS; GROWTH; ANNOTATION; INSIGHTS; IMMUNITY;
D O I
10.1007/s00299-017-2190-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 50 条
  • [41] Genome-Wide Characterization of Tomato FAD Gene Family and Expression Analysis under Abiotic Stresses
    Xi, Rui
    Liu, Huifang
    Chen, Yijia
    Zhuang, Hongmei
    Han, Hongwei
    Wang, Hao
    Wang, Qiang
    Li, Ning
    PLANTS-BASEL, 2023, 12 (22):
  • [42] Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.)
    Muleke, Everlyne M'mbone
    Wang, Yan
    Zhang Wan-ting
    Xu, Liang
    Ying Jia-li
    Karanja, Bernard K.
    Zhu Xian-wen
    Fan Lian-xue
    Ahmadzai, Zarwali
    Liu Li-wang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (01) : 120 - 131
  • [43] Genome-wide characterization of homeodomain-leucine zipper genes reveals RsHDZ17 enhances the heat tolerance in radish (Raphanus sativus L.)
    Wang, Kai
    Xu, Liang
    Wang, Yan
    Ying, Jiali
    Li, Jingxue
    Dong, Junhui
    Li, Cui
    Zhang, Xiaoli
    Liu, Liwang
    PHYSIOLOGIA PLANTARUM, 2022, 174 (05)
  • [44] Genome-Wide Identification, Characterization, and Expression Analysis of TUBBY Gene Family in Wheat (Triticum aestivum L.) under Biotic and Abiotic Stresses
    Altaf, Adil
    Zada, Ahmad
    Hussain, Shahid
    Gull, Sadia
    Ding, Yonggang
    Tao, Rongrong
    Zhu, Min
    Zhu, Xinkai
    AGRONOMY-BASEL, 2022, 12 (05):
  • [45] Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses
    Sharif, Rahat
    Xie, Chen
    Wang, Jin
    Cao, Zhen
    Zhang, Haiqiang
    Chen, Peng
    Li, Yuhong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 158 : 502 - 520
  • [46] Genome-Wide Identification and Characterization of the WRKY Gene Family in Scutellaria baicalensis Georgi under Diverse Abiotic Stress
    Zhang, Caijuan
    Wang, Wentao
    Wang, Donghao
    Hu, Suying
    Zhang, Qian
    Wang, Zhezhi
    Cui, Langjun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)
  • [47] Genome-wide identification, characterization and expression analysis of WRKY transcription factors under abiotic stresses in Carthamus tinctorius L
    Tan, Zhengwei
    Lu, Dandan
    Yu, Yongliang
    Li, Lei
    Xu, Lanjie
    Dong, Wei
    Yang, Qing
    Li, Chunming
    Wan, Xiufu
    Liang, Huizhen
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [48] Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses
    Chunhua Chen
    Xueqian Chen
    Jing Han
    Wenli Lu
    Zhonghai Ren
    BMC Plant Biology, 20
  • [49] Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.)
    Mishra, Shefali
    Chaudhary, Reeti
    Pandey, Bharti
    Singh, Gyanendra
    Sharma, Pradeep
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Genome-Wide Identification and Expression Profiling of the ERF Gene Family in Medicago sativa L. Under Various Abiotic Stresses
    Jin, Xiaoyu
    Yin, Xiaofan
    Ndayambaza, Boniface
    Zhang, Zhengshe
    Min, Xueyang
    Lin, Xiaoshan
    Wang, Yanrong
    Liu, Wenxian
    DNA AND CELL BIOLOGY, 2019, 38 (10) : 1056 - 1068