Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques

被引:30
|
作者
Abhishek, Arjun [1 ]
Jha, Rajib Kumar [1 ]
Sinha, Ruchi [2 ]
Jha, Kamlesh [3 ]
机构
[1] Indian Inst Technol Patna, Dept Elect Engn, Patna, Bihar, India
[2] All India Inst Med Sci Patna, Dept Pathol & Lab Med, Patna, Bihar, India
[3] All India Inst Med Sci Patna, Dept Physiol, Patna, Bihar, India
关键词
Acute myeloid leukemia; Acute lymphoblastic leukemia; Heterogeneous dataset; Machine learning; Deep learning; FRAMEWORK;
D O I
10.1016/j.bspc.2021.103341
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Today, artificial intelligence and deep learning techniques constitute a prominent part in the area of medical sciences. These techniques help doctors detect diseases early and reduce their burden as well as chances of errors. However, experiments based on deep learning techniques require large and well-annotated dataset. This paper introduces a novel dataset of 500 peripheral blood smear images, containing normal, Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia images. The dataset comprises almost 1700 cancerous blood cells. The size of the dataset is increased by adding images of a publicly available dataset and forming a heterogeneous dataset. The heterogeneous dataset is used for the automated binary classification task, which is one of the major tasks of the proposed work. The proposed work perform binary as well as three-class classification tasks involving stateof-the-art techniques based on machine learning and deep learning. For binary classification, the proposed work achieved an accuracy of 97% when fully connected layers along with the last three convolutional layers of VGG16 are fine tuned and 98% for DenseNet121 along with support vector machine. For three-class classification task, an accuracy of 95% is obtained for ResNet50 along with support vector machine. The preparation of the novel dataset is done under the opinion of various expertise that will help the scientific community for medical research supported by machine learning models.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Comparative Analysis of Diabetic Retinopathy Classification Approaches Using Machine Learning and Deep Learning Techniques
    Ruchika Bala
    Arun Sharma
    Nidhi Goel
    Archives of Computational Methods in Engineering, 2024, 31 : 919 - 955
  • [22] Arabic News Classification Based on the Country of Origin Using Machine Learning and Deep Learning Techniques
    Zamzami, Nuha
    Himdi, Hanen
    Sabbeh, Sahar F.
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [23] Comparative Analysis of Diabetic Retinopathy Classification Approaches Using Machine Learning and Deep Learning Techniques
    Bala, Ruchika
    Sharma, Arun
    Goel, Nidhi
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (02) : 919 - 955
  • [24] Pathomics and Deep Learning Classification of a Heterogeneous Fluorescence Histology Image Dataset
    Ioannidis, Georgios S.
    Trivizakis, Eleftherios
    Metzakis, Ioannis
    Papagiannakis, Stilianos
    Lagoudaki, Eleni
    Marias, Kostas
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [25] Banana and Guava dataset for machine learning and deep learning-based quality classification
    Kumari, Abiban
    Singh, Jaswinder
    DATA IN BRIEF, 2024, 57
  • [26] Land Use/Land Cover Classification Using Machine Learning and Deep Learning Algorithms for EuroSAT Dataset - A Review
    Loganathan, Agilandeeswari
    Koushmitha, Suri
    Arun, Yerru Nanda Krishna
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1363 - 1374
  • [27] Automated evaluation of rheumatoid arthritis from hand radiographs using Machine Learning and deep learning techniques
    Ahalya, R. K.
    Umapathy, Snekhalatha
    Krishnan, Palani Thanaraj
    Joseph Raj, Alex Noel
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2022, 236 (08) : 1238 - 1249
  • [28] Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques
    Yu, Felix
    Croso, Gianluca Silva
    Kim, Tae Soo
    Song, Ziang
    Parker, Felix
    Hager, Gregory D.
    Reiter, Austin
    Vedula, S. Swaroop
    Ali, Haider
    Sikder, Shameema
    JAMA NETWORK OPEN, 2019, 2 (04) : e191860
  • [29] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [30] Deep Learning Model of Image Classification Using Machine Learning
    Lv, Qing
    Zhang, Suzhen
    Wang, Yuechun
    ADVANCES IN MULTIMEDIA, 2022, 2022