Complex monge-ampere of a maximum

被引:3
|
作者
Bedford, Eric [1 ]
Ma'u, Sione [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
current; measure; monge-ampere; plurisubharmonic;
D O I
10.1090/S0002-9939-07-09145-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a formula for (dd(c)u)(n) where u = max(j)u(j) is a finite maximum. As an application, we compute the complex equilibrium measures of some generalized polyhedra.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [31] Monge-Ampere Equations on Complex Manifolds with Boundary
    Boucksom, Sebastien
    COMPLEX MONGE-AMPERE EQUATIONS AND GEODESICS IN THE SPACE OF KAHLER METRICS, 2012, 2038 : 257 - 282
  • [32] Local noncollapsing for complex Monge-Ampere equations
    Guo, Bin
    Song, Jian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 225 - 238
  • [33] ON THE MONGE-AMPERE EQUATION
    Figalli, Alessio
    ASTERISQUE, 2019, (414) : 477 - 503
  • [34] A complex parabolic type Monge-Ampere equation
    Spiliotis, J
    APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 35 (03): : 265 - 282
  • [35] DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION
    BEDFORD, E
    TAYLOR, BA
    INVENTIONES MATHEMATICAE, 1976, 37 (01) : 1 - 44
  • [36] COMPLEX MONGE-AMPERE AND SYMPLECTIC-MANIFOLDS
    SEMMES, S
    AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (03) : 495 - 550
  • [37] GEOMETRY OF THE COMPLEX HOMOGENEOUS MONGE-AMPERE EQUATION
    WONG, PM
    INVENTIONES MATHEMATICAE, 1982, 67 (02) : 261 - 274
  • [38] A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS
    Berman, Robert J.
    Boucksom, Sebastien
    Guedj, Vincent
    Zeriahi, Ahmed
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 179 - 245
  • [39] Weak subsolutions to complex Monge-Ampere equations
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 727 - 738
  • [40] Remarks on the Homogeneous Complex Monge-Ampere Equation
    Guan, Pengfei
    COMPLEX ANALYSIS: SEVERAL COMPLEX VARIABLES AND CONNECTIONS WITH PDE THEORY AND GEOMETRY, 2010, : 175 - 185