Existence of optimal solutions for general stochastic linear complementarity problems

被引:1
|
作者
Zhang, Chao [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic linear complementarity problem; Expected residual minimization; Existence of optimal solutions; Nonconvex program;
D O I
10.1016/j.orl.2010.11.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we show the solvability of the expected residual minimization (ERM) formulation for the general stochastic linear complementarity problem (SLCP) under mild assumptions. The properties of the ERM formulation are dependent on the choice of NCP functions. We focus on the ERM formulations defined by the "min" NCP function and the penalized FB function, both of which are nonconvex programs on the nonnegative orthant. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 82
页数:5
相关论文
共 50 条
  • [21] NUMBER OF SOLUTIONS OF A CLASS OF LINEAR COMPLEMENTARITY PROBLEMS
    KANEKO, I
    MATHEMATICAL PROGRAMMING, 1979, 17 (01) : 104 - 105
  • [22] Validation and enclosure of solutions of linear complementarity problems
    Z. Wang
    Computing, 2007, 79 : 61 - 77
  • [23] Robust solution of monotone stochastic linear complementarity problems
    Chen, Xiaojun
    Zhang, Chao
    Fukushima, Masao
    MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) : 51 - 80
  • [24] Robust solution of monotone stochastic linear complementarity problems
    Xiaojun Chen
    Chao Zhang
    Masao Fukushima
    Mathematical Programming, 2009, 117 : 51 - 80
  • [25] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE GENERALIZED LINEAR COMPLEMENTARITY-PROBLEM
    HABETLER, GJ
    SZANC, BP
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (01) : 103 - 116
  • [26] Existence of solutions of vector variational inequalities and vector complementarity problems
    Ansari, Q. H.
    Farajzadeh, A. P.
    Schaible, S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 45 (02) : 297 - 307
  • [27] The existence of solutions for set-valued nonlinear complementarity problems
    Fan, Jiang-Hua
    Li, Pei-Xing
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2007, 46 (06): : 22 - 24
  • [28] Existence of solutions of vector variational inequalities and vector complementarity problems
    Q. H. Ansari
    A. P. Farajzadeh
    S. Schaible
    Journal of Global Optimization, 2009, 45 : 297 - 307
  • [29] Linear complementarity as a general solution method to combinatorial problems
    Di Giacomo, Laura
    Patrizi, Giacomo
    Argento, Emanuele
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (01) : 73 - 79
  • [30] General indefinite backward stochastic linear-quadratic optimal control problems
    Sun, Jingrui
    Wen, Jiaqiang
    Xiong, Jie
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28