Confirmation of ACRU model results for applications in land use and climate change studies

被引:50
|
作者
Warburton, M. L. [1 ]
Schulze, R. E. [1 ]
Jewitt, G. P. W. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Bioresources Engn & Environm Hydrol, ZA-3209 Scottsville, South Africa
基金
新加坡国家研究基金会;
关键词
HYDROLOGICAL RESPONSES; RIVER-BASIN; CATCHMENT; IMPACTS; VERIFICATION; COVER; VALIDATION; SIMULATION; SCENARIOS; DISCHARGE;
D O I
10.5194/hess-14-2399-2010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows of the three selected catchments and was able to represent the hydrological responses from the range of climates and diversity of land uses present within the catchments.
引用
收藏
页码:2399 / 2414
页数:16
相关论文
共 50 条
  • [41] Climate - Impact of land-use change on climate - Reply
    Cai, M
    Kalnay, E
    NATURE, 2004, 427 (6971) : 214 - 214
  • [42] A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon
    Beillouin, Damien
    Cardinael, Remi
    Berre, David
    Boyer, Annie
    Corbeels, Marc
    Fallot, Abigail
    Feder, Frederic
    Demenois, Julien
    GLOBAL CHANGE BIOLOGY, 2022, 28 (04) : 1690 - 1702
  • [43] The relationship between land-use change and climate change
    Dale, VH
    ECOLOGICAL APPLICATIONS, 1997, 7 (03) : 753 - 769
  • [44] Forest land use change in the Philippines and climate change mitigation
    Lasco R.D.
    Pulhin F.B.
    Mitigation and Adaptation Strategies for Global Change, 2000, 5 (1) : 81 - 97
  • [45] Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique
    Andaryani, Soghra
    Nourani, Vahid
    Trolle, Dennis
    Dehghani, Maryam
    Asl, Abolfazl Mokhtari
    JOURNAL OF HYDROLOGY, 2019, 578
  • [46] Impacts of biofuels on climate change, water use, and land use
    Delucchi, Mark A.
    YEAR IN ECOLOGY AND CONSERVATION BIOLOGY 2010, 2010, 1195 : 28 - 45
  • [47] A thermal balance model for livestock buildings for use in climate change studies
    Cooper, K
    Parsons, DJ
    Demmers, T
    JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 1998, 69 (01): : 43 - 52
  • [48] CLIMATE-RELEVANT LAND USE AND LAND COVER CHANGE POLICIES
    Mahmood, Rezaul
    Pielke, Roger A., Sr.
    McAlpine, Clive A.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (02) : 195 - 202
  • [49] Water use efficiency in China is impacted by climate change and land use and land cover
    Fu Y.
    Jian S.
    Yu X.
    Environmental Science and Pollution Research, 2024, 31 (30) : 42840 - 42856
  • [50] Impacts of land use land cover change and climate change on river hydro-morphology- a review of research studies in tropical regions
    Kayitesi, Naomie M.
    Guzha, Alphonce C.
    Mariethoz, Gregoire
    JOURNAL OF HYDROLOGY, 2022, 615