Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC

被引:51
|
作者
Wu, Sau Lan [1 ]
Sun, Shaojun [1 ]
Guan, Wen [1 ]
Zhou, Chen [1 ]
Chan, Jay [1 ]
Cheng, Chi Lung [1 ]
Pham, Tuan [1 ]
Qian, Yan [1 ]
Wang, Alex Zeng [1 ]
Zhang, Rui [1 ]
Livny, Miron [2 ]
Glick, Jennifer [3 ]
Barkoutsos, Panagiotis Kl [4 ]
Woerner, Stefan [4 ]
Tavernelli, Ivano [4 ]
Carminati, Federico [5 ]
Di Meglio, Alberto [5 ]
Li, Andy C. Y. [6 ]
Lykken, Joseph [6 ]
Spentzouris, Panagiotis [6 ]
Chen, Samuel Yen-Chi [7 ]
Yoo, Shinjae [7 ]
Wei, Tzu-Chieh [8 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[3] IBM Quantum, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] IBM Quantum, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[5] CERN, CERN Quantum Technol Initiat, IT Dept, CH-1211 Geneva, Switzerland
[6] Fermilab Natl Accelerator Lab, Quantum Inst, POB 500, Batavia, IL 60510 USA
[7] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[8] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
美国能源部;
关键词
BOSON;
D O I
10.1103/PhysRevResearch.3.033221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in high energy physics by offering computational speedups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics analysis: t (t) over barH (Higgs boson production in association with a top quark pair). In our quantum simulation study using up to 20 qubits and up to 50 000 events, the QSVM-Kernel method performs as well as its classical counterparts in three different platforms from Google Tensorflow Quantum, IBM Quantum, and Amazon Braket. Additionally, using 15 qubits and 100 events, the application of the QSVM-Kernel method on the IBM superconducting quantum hardware approaches the performance of a noiseless quantum simulator. Our study confirms that the QSVM-Kernel method can use the large dimensionality of the quantum Hilbert space to replace the classical feature space in realistic physics data sets.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Quantum machine learning: from physics to software engineering
    Melnikov, Alexey
    Kordzanganeh, Mohammad
    Alodjants, Alexander
    Lee, Ray-Kuang
    ADVANCES IN PHYSICS-X, 2023, 8 (01):
  • [42] Machine learning toolbox for quantum many body physics
    Filippo Vicentini
    Nature Reviews Physics, 2021, 3 : 156 - 156
  • [43] Machine learning toolbox for quantum many body physics
    Vicentini, Filippo
    NATURE REVIEWS PHYSICS, 2021, 3 (03) : 156 - 156
  • [44] Boltzmann machine learning with a variational quantum algorithm
    Shingu, Yuta
    Seki, Yuya
    Watabe, Shohei
    Endo, Suguru
    Matsuzaki, Yuichiro
    Kawabata, Shiro
    Nikuni, Tetsuro
    Hakoshima, Hideaki
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [45] Quantum Machine Learning Algorithm for Knowledge Graphs
    Ma, Yunpu
    Tresp, Volker
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2021, 2 (03):
  • [46] Quantum Energy Prediction using Graph Kernel
    Duan, Jiuding
    Seko, Atsuto
    Kashima, Hisashi
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1651 - 1656
  • [47] Quantum algorithm for twin extreme learning machine
    Ning, Tong
    Yang, Youlong
    Du, Zhenye
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [48] Quantum inspired kernel matrices: Exploring symmetry in machine learning
    Raubitzek, Sebastian
    Schrittwieser, Sebastian
    Schatten, Alexander
    Mallinger, Kevin
    PHYSICS LETTERS A, 2024, 525
  • [49] Quantum counting algorithm and its application in mesoscopic physics
    Lesovik, G. B.
    Suslov, M. V.
    Blatter, G.
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [50] High Dimensional Quantum Machine Learning With Small Quantum Computers
    Marshall, S. C.
    Gyurik, C.
    Dunjko, V
    QUANTUM, 2023, 7