An architecture for molecular computing using quantum-dot cellular automata

被引:0
|
作者
Blair, EP [1 ]
Lent, CS [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
关键词
architecture; clocking; defect tolerance; molecular QCA;
D O I
暂无
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.
引用
收藏
页码:402 / 405
页数:4
相关论文
共 50 条
  • [21] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 261 - 263
  • [22] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Zuo, X
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04): : 1394 - 1398
  • [23] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, RK
    Ramasubramaniam, R
    Amlani, I
    Bernstein, GH
    Lent, CS
    CURRENT ISSUES IN HETEROEPITAXIAL GROWTH-STRESS RELAXATION AND SELF ASSEMBLY, 2002, 696 : 221 - 231
  • [24] Quantum-dot cellular automata
    Cole, T
    Lusth, JC
    PROGRESS IN QUANTUM ELECTRONICS, 2001, 25 (04) : 165 - 189
  • [25] Quantum-Dot Cellular Automata: A Clocked Architecture for High-Speed, Energy-Efficient Molecular Computing
    Blair, Enrique P.
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2017, 2017, 10240 : 56 - 68
  • [26] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, R
    Timler, J
    Toth, G
    Bernstein, GH
    Lent, CS
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 875 - 880
  • [27] Quantum-dot cellular automata
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
    Microelectron Eng, 1 (261-263):
  • [28] Probabilistic analysis of a molecular quantum-dot cellular automata
    Dysart, Timothy J.
    Kogge, Peter M.
    DFT 2007: 22ND IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS, PROCEEDINGS, 2007, : 478 - 486
  • [29] Theoretical study of molecular quantum-dot cellular automata
    Lu Y.
    Lent C.S.
    Journal of Computational Electronics, 2005, 4 (1-2) : 115 - 118
  • [30] Radius of effect in molecular quantum-dot cellular automata
    Rahimi, Ehsan
    Nejad, Shahram Mohammad
    MOLECULAR PHYSICS, 2013, 111 (05) : 697 - 705