Beat and Downbeat Tracking of Symbolic Music Data Using Deep Recurrent Neural Networks

被引:0
|
作者
Chuang, Yi-Chin [1 ]
Su, Li
机构
[1] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung, Taiwan
关键词
TIME;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Musical beat tracking is one of the most investigated tasks in music information retrieval (MIR). Research endeavors on this task have mostly been focused on the modeling of audio data representations. In contrast, beat tracking of symbolic music contents (e.g., MIDI, score sheets) has been relatively overlooked in the past years. In this paper, we revisit the task of symbolic music beat tracking and present to solve this task with modern deep learning approaches. To the extent of our knowledge, it is the first time that utilizing deep learning approaches to track beats and downbeats of symbolic music data. The proposed symbolic beat tracking framework performs joint beat and downbeat tracking in a multi-task learning (MTL) manner, and we investigate various types of networks which are based on the recurrent neural networks (RNN), such as bidirectional long short-term memory (BLSTM) network, hierarchical multi-scale (HM) LSTM, and BLSTM with the attention mechanism. In the experiments, a systematic comparison of these networks and state-of-art audio beat tracking methods are performed on the MusicNet dataset. Experiment results show that the BLSTM model trained specifically on symbolic data outperforms the state-of-the-art beat tracking methods utilized on synthesized audio. Such a comparison of performance also indicates the technical challenges in symbolic music beat tracking.
引用
收藏
页码:346 / 352
页数:7
相关论文
共 50 条
  • [31] Music instrument recognition using deep convolutional neural networks
    Solanki A.
    Pandey S.
    International Journal of Information Technology, 2022, 14 (3) : 1659 - 1668
  • [32] Music emotion recognition using deep convolutional neural networks
    Li, Ting
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 3063 - 3078
  • [33] Measurement of Music Aesthetics Using Deep Neural Networks and Dissonances
    Paroiu, Razvan
    Trausan-Matu, Stefan
    INFORMATION, 2023, 14 (07)
  • [34] Binary Emotion Classification of Music Using Deep Neural Networks
    Revathy, V. R.
    Pillai, Anitha S.
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 : 484 - 492
  • [35] Personal Recommendation Using Deep Recurrent Neural Networks in NetEase
    Wu, Sai
    Ren, Weichao
    Yu, Chengchao
    Chen, Gang
    Zhang, Dongxiang
    Zhu, Jingbo
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1218 - 1229
  • [36] Language Identification Using Deep Convolutional Recurrent Neural Networks
    Bartz, Christian
    Herold, Tom
    Yang, Haojin
    Meinel, Christoph
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 880 - 889
  • [37] Music emotion recognition using recurrent neural networks and pretrained models
    Jacek Grekow
    Journal of Intelligent Information Systems, 2021, 57 : 531 - 546
  • [38] FAKE NEWS DETECTION USING DEEP RECURRENT NEURAL NETWORKS
    Jiang, Tao
    Li, Jian Ping
    Ul Haq, Amin
    Saboor, Abdus
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 205 - 208
  • [39] Solar Irradiance Forecasting Using Deep Recurrent Neural Networks
    Alzahrani, Ahmad
    Shamsi, Pourya
    Ferdowsi, Mehdi
    Dagli, Cihan
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 988 - 994
  • [40] Characterization of the modal response using Deep recurrent neural networks
    Gonzalez, Wladimir M.
    Ferrada, Andres
    Boroschek, Ruben L.
    Droguett, Enrique Lopez
    ENGINEERING STRUCTURES, 2022, 256