Frequency of stochastic oscillations in interacting population models

被引:3
|
作者
Morita, S [1 ]
Itoh, Y [1 ]
Tainaka, K [1 ]
机构
[1] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan
关键词
stochastic oscillation; quasi-cycle; prey predator system; interacting population; deterministic skeleton; coherent resonance;
D O I
10.1143/JPSJ.74.819
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interacting population models often exhibit sustained stochastic oscillations, while the corresponding deterministic models present damped oscillations toward stable equilibrium. We study stochastic oscillation using the Langevin equation. We calculate several indicators that correspond to frequency. We find that their values are different.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 50 条
  • [31] Networks of interacting stochastic fluid models with infinite and finite buffers
    Nikki Sonenberg
    Peter G. Taylor
    Queueing Systems, 2019, 92 : 293 - 322
  • [32] The 1996 Wald Memorial Lectures - Stochastic models of interacting systems
    Liggett, TM
    ANNALS OF PROBABILITY, 1997, 25 (01): : 1 - 29
  • [33] Algorithmic product-form approximations of interacting stochastic models
    Marin, Andrea
    Vigliotti, Maria Grazia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (12) : 3852 - 3868
  • [34] Networks of interacting stochastic fluid models with infinite and finite buffers
    Sonenberg, Nikki
    Taylor, Peter G.
    QUEUEING SYSTEMS, 2019, 92 (3-4) : 293 - 322
  • [35] Sensitivity of low frequency oscillations to updated solar models
    Provost, J
    Berthomieu, G
    Morel, P
    SPACE SCIENCE REVIEWS, 1998, 85 (1-2) : 117 - 124
  • [36] Sensitivity of Low Frequency Oscillations to Updated Solar Models
    J. Provost
    G. Berthomieu
    P. Morel
    Space Science Reviews, 1998, 85 : 117 - 124
  • [37] Frequency of symbol occurrences in bicomponent stochastic models
    de Falco, D
    Goldwurm, M
    Lonati, V
    THEORETICAL COMPUTER SCIENCE, 2004, 327 (03) : 269 - 300
  • [38] Extinction-time for stochastic population models
    Doubova, Anna
    Vadillo, Fernando
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 295 : 159 - 169
  • [39] On a Class of Deterministic Population Models with Stochastic Foundation
    Bernd Gotzen
    Volkmar Liebscher
    Sebastian Walcher
    Bulletin of Mathematical Biology, 2011, 73 : 1559 - 1582
  • [40] Stochastic models in population biology and their deterministic analogs
    McKane, AJ
    Newman, TJ
    PHYSICAL REVIEW E, 2004, 70 (04): : 19 - 1