Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy

被引:119
|
作者
Pu, Yinying [1 ]
Yin, Haohao [1 ]
Dong, Caihong [3 ,4 ]
Xiang, Huijing [2 ]
Wu, Wencheng [5 ]
Zhou, Bangguo [1 ]
Du, Dou [1 ]
Chen, Yu [2 ]
Xu, Huixiong [1 ]
机构
[1] Tongji Univ, Natl Clin Res Ctr Intervent Med,Shanghai Peoples, Dept Med Ultrasound,Clin Res Ctr Intervent Med,Sh, Ultrasound Res & Educ Inst,Sch Med,Ctr Minimally, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Sch Life Sci, Shanghai Engn Res Ctr Organ Repair Materdicine La, Shanghai 200444, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Ultrasound, Shanghai 200032, Peoples R China
[4] Shanghai Inst Med Imaging, Shanghai 200032, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
genomic editing; metal-organic frameworks; ROS responsive; sonodynamic therapy; tumor therapy; METAL-ORGANIC FRAMEWORKS; DELIVERY; THERAPY; CANCER; NANOSYSTEMS; MTH1; DNA;
D O I
10.1002/adma.202104641
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (O-1(2))-generating MOF structures anchored with CRISPR-Cas9 systems via O-1(2)-cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant O-1(2) to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant O-1(2) generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Temperature effect on CRISPR-Cas9 mediated genome editing
    Guanghai Xiang
    Xingying Zhang
    Chenrui An
    Chen Cheng
    Haoyi Wang
    JournalofGeneticsandGenomics, 2017, 44 (04) : 199 - 205
  • [32] Genome editing of Francisella tularensis using (CRISPR-Cas9)
    Southern, Stephanie J.
    Oyston, Petra C. F.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2020, 176
  • [33] Development of delivery strategies for CRISPR-Cas9 genome editing
    Liu, Qi
    Yang, Jianhui
    Xing, Yumeng
    Zhao, Yu
    Liu, Yang
    BMEMAT, 2023, 1 (03):
  • [34] The Application of CRISPR-Cas9 Genome Editing in Caenorhabditis elegans
    Xu, Suhong
    JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (08) : 413 - 421
  • [35] Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity
    Tycko, Josh
    Myer, Vic E.
    Hsu, Patrick D.
    MOLECULAR CELL, 2016, 63 (03) : 355 - 370
  • [36] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Massimo Ferrara
    Miriam Haidukowski
    Antonio F. Logrieco
    John F. Leslie
    Giuseppina Mulè
    Scientific Reports, 9
  • [37] Genome characterization and CRISPR-Cas9 editing of a human neocentromere
    Palazzo, Antonio
    Piccolo, Ilaria
    Minervini, Crescenzio Francesco
    Purgato, Stefania
    Capozzi, Oronzo
    D'Addabbo, Pietro
    Cumbo, Cosimo
    Albano, Francesco
    Rocchi, Mariano
    Catacchio, Claudia Rita
    CHROMOSOMA, 2022, 131 (04) : 239 - 251
  • [38] Challenges and advances of CRISPR-Cas9 genome editing in therapeutics
    Stellos, Konstantinos
    Musunuru, Kiran
    CARDIOVASCULAR RESEARCH, 2019, 115 (02) : E12 - E14
  • [39] Multiplexed CRISPR-Cas9 and CRISPR-Cas12a Systems for Genome Editing in Plants
    Li, Gen
    Qi, Yiping
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2023, 59 : S67 - S67
  • [40] Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9
    Ji, Jie
    Zhang, Chunyang
    Sun, Zhongfeng
    Wang, Longlong
    Duanmu, Deqiang
    Fan, Qiuling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (10)