A Cyber-Physical Systems Approach to Collaborative Intersection Management and Control

被引:5
|
作者
Guzman, Jose A. [1 ]
Nunez, Felipe [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Elect Engn, Santiago 7820436, Chile
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Real-time systems; Urban areas; Computer architecture; Collaboration; Petri nets; Detectors; Data models; Intelligent transportation systems; cyber-physical systems; timed Petri nets; urban traffic control; intersection management; URBAN TRAFFIC CONTROL; SIGNAL CONTROL; PETRI NETS; REAL-TIME; NETWORKS; INTERNET; THINGS;
D O I
10.1109/ACCESS.2021.3096330
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As urban population increases steadily, current mobility and transportation services become inefficient, needing an urgent improvement since they represent a major source of discomfort and economic losses. In this context, the concept of intelligent transportation systems takes relevance as a way of optimizing those services with the use of technology. This work proposes a cyber-physical systems approach to collaborative urban traffic control. Specifically, a three-layer architecture is proposed to address the intersection management problem, making use of modular cyber-physical object abstractions and timed Petri nets. Preliminary implementations in a pseudo-real environment show that the proposed system is capable of handling the communication and processing loads, while improving traffic performance with respect to classical solutions for traffic signals, outperforming timed, Webster and coordinated control methods in pilot-scale tests.
引用
收藏
页码:99617 / 99632
页数:16
相关论文
共 50 条
  • [41] Covert Attacks in Cyber-Physical Control Systems
    de Sa, Alan Oliveira
    Rust da Costa Carmo, Luiz F.
    Machado, Raphael C. S.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) : 1641 - 1651
  • [42] Resilience of cyber-physical manufacturing control systems
    Moghaddam, Mohsen
    Deshmukh, Abhijit
    MANUFACTURING LETTERS, 2019, 20 : 40 - 44
  • [43] Learning Tracking Control for Cyber-Physical Systems
    Wu, Chengwei
    Pan, Wei
    Sun, Guanghui
    Liu, Jianxing
    Wu, Ligang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9151 - 9163
  • [44] Control Protocols Design for Cyber-Physical Systems
    Cai, Yi
    Qi, Deyu
    2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2015, : 668 - 671
  • [45] Hypergames and Cyber-Physical Security for Control Systems
    Bakker, Craig
    Bhattacharya, Arnab
    Chatterjee, Samrat
    Vrabie, Draguna L.
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2020, 4 (04)
  • [46] Congestion Control in Molecular Cyber-Physical Systems
    Felicetti, Luca
    Femminella, Mauro
    Reali, Gianluca
    IEEE ACCESS, 2017, 5 : 10000 - 10011
  • [47] Optimization and Control of Cyber-Physical Vehicle Systems
    Bradley, Justin M.
    Atkins, Ella M.
    SENSORS, 2015, 15 (09) : 23020 - 23049
  • [48] Special Issue on Control of Cyber-Physical Systems
    Johansson, Karl H.
    Pappas, George J.
    Tabuada, Paulo
    Tomlin, Claire J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (12) : 3120 - 3121
  • [49] The analysis of traffic control cyber-physical systems
    Shi Jianjun
    Wu Xu
    Guan Jizhen
    Chen Yangzhou
    INTELLIGENT AND INTEGRATED SUSTAINABLE MULTIMODAL TRANSPORTATION SYSTEMS PROCEEDINGS FROM THE 13TH COTA INTERNATIONAL CONFERENCE OF TRANSPORTATION PROFESSIONALS (CICTP2013), 2013, 96 : 2487 - 2496
  • [50] Collaborative Softbots: Enhancing Operational Excellence in Systems of Cyber-Physical Systems
    Rabelo, Ricardo J.
    Zambiasi, Saulo Popov
    Romero, David
    COLLABORATIVE NETWORKS AND DIGITAL TRANSFORMATION, 2019, : 55 - 68