Atomistic modeling of the tensile behavior of monoclinic ZrO2 bicrystal

被引:2
|
作者
Wang, C. [1 ]
Feng, R. [1 ]
Diestler, D. J. [2 ]
Zeng, X. C. [3 ]
机构
[1] Univ Nebraska, Dept Engn Mech, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68583 USA
[3] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATION; GRAIN-BOUNDARY; STABILIZED ZIRCONIA; DEFORMATION; STRENGTH;
D O I
10.1063/1.3452340
中图分类号
O59 [应用物理学];
学科分类号
摘要
Molecular dynamics was used to simulate the tensile behavior of monoclinic ZrO2 bicrystals constructed by fusing two symmetrically tilted single crystals at several temperatures ranging from 300 to 1200 K and then annealing them to 300 K. The average amorphous grain boundary (GB) is about 11 angstrom thick (approximately twice the average unit-cell dimension). Axial elongation of the typical bicrystal at constant (boundary) velocity leads to failure at a global strain of about 4%, at which the maximum stress (i.e., the tensile strength) is approximately 6 GPa. The failure process is ductile, driven by growth and coalescence of voids in the GB, in contrast with that of the monoclinic single crystal, which undergoes essentially brittle fracture at a tensile stress of around 10 GPa. The tensile strength of the bicrystal is approximately inversely proportional to the thickness of the GB. Decreasing the fusion temperature increases the thickness of the GB and lowers the tensile strength accordingly. The dependence of tensile strength on the loading rate is insignificant for the range of tilt angles and loading conditions examined. The influence of the GB on the small-strain effective elastic response of the bicrystal is also insignificant. (C) 2010 American Institute of Physics. [doi:10.1063/1.3452340]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Creep behavior of nanocrystalline monoclinic ZrO2
    Roddy, MJ
    Cannon, WR
    Skandan, G
    Hahn, H
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2002, 22 (14-15) : 2657 - 2662
  • [2] Periodic DFT and Atomistic Thermodynamic Modeling of the Surface Hydration Equilibria and Morphology of Monoclinic ZrO2 Nanocrystals
    Piskorz, Witold
    Grybos, Joanna
    Zasada, Filip
    Cristol, Sylvain
    Paul, Jean-Francois
    Adamski, Andrzej
    Sojka, Zbigniew
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (49): : 24274 - 24286
  • [3] THERMOCHEMISTRY OF ZRO2 MONOCLINIC PHASE
    KORNILOV, AN
    USHAKOVA, IM
    ZHURNAL FIZICHESKOI KHIMII, 1976, 50 (11): : 2951 - 2953
  • [4] THE ELASTIC PROPERTIES OF MONOCLINIC ZRO2
    NEVITT, MV
    CHAN, SK
    LIU, JZ
    GRIMSDITCH, MH
    FANG, Y
    PHYSICA B & C, 1988, 150 (1-2): : 230 - 233
  • [5] MONOCLINIC ZRO2 POWDERS - SOME FEATURES OF THE INTERFACIAL ELECTROSTATIC BEHAVIOR
    ARDIZZONE, S
    CHIDICHIMO, G
    GOLEMME, A
    RADAELLI, M
    CROATICA CHEMICA ACTA, 1990, 63 (03) : 545 - 552
  • [6] CRYSTAL STRUCTURE OF BADDELEYITE ( MONOCLINIC ZRO2 ) AND ITS RELATION TO POLYMORPHISM OF ZRO2
    SMITH, DK
    NEWKIRK, HW
    ACTA CRYSTALLOGRAPHICA, 1965, 18 : 983 - +
  • [7] STRAIN MEASUREMENTS DURING TRANSITION ZRO2 (MONOCLINIC) REVERSIBLE ZRO2 (TETRAGONAL)
    BULJAN, T
    MCKINSTR.HA
    STUBICAN, VS
    AMERICAN CERAMIC SOCIETY BULLETIN, 1971, 50 (04): : 366 - &
  • [8] ELASTIC PROPERTIES OF MONOCLINIC AND ORTHORHOMBIC ZRO2
    KAWASAKI, S
    YAMANAKA, T
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1994, 13 (07) : 514 - 515
  • [9] THE CRYSTAL STRUCTURE OF BADDELEYITE (MONOCLINIC ZRO2)
    MCCULLOUGH, JD
    TRUEBLOOD, KN
    ACTA CRYSTALLOGRAPHICA, 1959, 12 (07): : 507 - 511
  • [10] CRYSTAL STRUCTURE OF MONOCLINIC HFO2 AND A COMPARISON WITH MONOCLINIC ZRO2
    RUH, R
    CORFIELD, PW
    AMERICAN CERAMIC SOCIETY BULLETIN, 1969, 48 (04): : 401 - &