Scaling limits for weakly pinned random walks with two large deviation minimizers

被引:5
|
作者
Funaki, Tadahisa [1 ]
Otobe, Tatsushi [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Railway Tech Res Inst Kokubunji, Tokyo 1858540, Japan
关键词
scaling limit; large deviation; random walks; pinning;
D O I
10.2969/jmsj/06231005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The scaling limits for d-dimensional random walks perturbed by an attractive force toward the origin are studied under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. Our results extend those obtained by [2] from the mean-zero Gaussian to non-Gaussian setting under the absence of the wall.
引用
收藏
页码:1005 / 1041
页数:37
相关论文
共 50 条
  • [11] Large Deviation Probabilities for Random Walks with Semiexponential Distributions
    A. A. Borovkov
    Siberian Mathematical Journal, 2000, 41 : 1061 - 1093
  • [12] ON THE LOWER BOUND OF LARGE DEVIATION OF RANDOM-WALKS
    CHIANG, TS
    ANNALS OF PROBABILITY, 1985, 13 (01): : 90 - 96
  • [13] Scaling limits of tree-valued branching random walks
    Duquesne, Thomas
    Khanfir, Robin
    Lin, Shen
    Torri, Niccole
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [14] Densities of Scaling Limits of Coupled Continuous Time Random Walks
    Marcin Magdziarz
    Tomasz Zorawik
    Fractional Calculus and Applied Analysis, 2016, 19 : 1488 - 1506
  • [15] DENSITIES OF SCALING LIMITS OF COUPLED CONTINUOUS TIME RANDOM WALKS
    Magdziarz, Marcin
    Zorawik, Tomasz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1488 - 1506
  • [16] SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES
    Fribergh, Alexander
    Kious, Daniel
    ANNALS OF PROBABILITY, 2018, 46 (02): : 605 - 686
  • [17] Large deviation results for random walks conditioned to stay positive
    Doney, Ronald A.
    Jones, Elinor M.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11
  • [18] Convex hulls of random walks: Large-deviation properties
    Claussen, Gunnar
    Hartmann, Alexander K.
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [19] Scaling limits of branching random walks and branching-stable processes
    BERTOIN, J. E. A. N.
    YANG, H. A. I. R. U. O.
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) : 1009 - 1025
  • [20] Persistent Random Walks. II. Functional Scaling Limits
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2019, 32 : 633 - 658