Scaling limits for weakly pinned random walks with two large deviation minimizers

被引:5
|
作者
Funaki, Tadahisa [1 ]
Otobe, Tatsushi [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Railway Tech Res Inst Kokubunji, Tokyo 1858540, Japan
关键词
scaling limit; large deviation; random walks; pinning;
D O I
10.2969/jmsj/06231005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The scaling limits for d-dimensional random walks perturbed by an attractive force toward the origin are studied under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. Our results extend those obtained by [2] from the mean-zero Gaussian to non-Gaussian setting under the absence of the wall.
引用
收藏
页码:1005 / 1041
页数:37
相关论文
共 50 条
  • [1] Concentration under scaling limits for weakly pinned Gaussian random walks
    Bolthausen, Erwin
    Funaki, Tadahisa
    Otobe, Tatsushi
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 441 - 480
  • [2] Concentration under scaling limits for weakly pinned Gaussian random walks
    Erwin Bolthausen
    Tadahisa Funaki
    Tatsushi Otobe
    Probability Theory and Related Fields, 2009, 143 : 441 - 480
  • [3] Large Deviation Principle for the Pinned Motion of Random Walks
    Chiyonobu, Taizo
    Ichihara, Kanji
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2012, 19 (04): : 677 - 697
  • [4] Scaling limits for weakly pinned Gaussian random fields under the presence of two possible candidates
    Bolthausen, Erwin
    Chiyonobu, Taizo
    Funaki, Tadahisa
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) : 1359 - 1412
  • [5] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [6] Large deviation estimates for branching random walks*
    Buraczewski, Dariusz
    Maslanka, Mariusz
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 823 - 840
  • [7] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [8] Scaling limits of recurrent excited random walks on integers
    Dolgopyat, Dmitry
    Kosygina, Elena
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [9] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558
  • [10] Large deviation probabilities for random walks with semiexponential distributions
    Borovkov, AA
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (06) : 1061 - 1093