Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

被引:241
|
作者
Jurco, B
Schraml, S
Schupp, P
Wess, J
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[3] Univ Munich, Sekt Phys, D-80333 Munich, Germany
来源
EUROPEAN PHYSICAL JOURNAL C | 2000年 / 17卷 / 03期
关键词
Gauge Group; Finite Number; Gauge Transformation; Field Component; Gauge Field;
D O I
10.1007/s100520000487
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [31] The theory of non-Abelian tensor fields: Gauge transformations and curvature
    Akhmedov, E. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (01) : 509 - 523
  • [32] Gauge theories and non-commutative geometry
    Iliopoulos, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 139 - 145
  • [33] Gauge theories and non-commutative geometry
    Floratos, EG
    Iliopoulos, J
    PHYSICS LETTERS B, 2006, 632 (04) : 566 - 570
  • [34] A review of non-commutative gauge theories
    N. G. Deshpande
    Pramana, 2003, 60 : 189 - 198
  • [35] Geometry of the gauge algebra in non-commutative Yang-Mills theory
    Lizzi, F
    Zampini, A
    Szabo, RJ
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08): : 1 - 53
  • [36] Solitons in non-commutative gauge theory
    Gross, DJ
    Nekrasov, NA
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (03):
  • [37] DIFFICULTIES IN FIXING THE GAUGE IN NON-ABELIAN GAUGE THEORIES
    SCIUTO, S
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 49 (02): : 181 - 191
  • [38] GAUGE COVARIANCE IN NON-ABELIAN GAUGE-THEORIES
    YOKOYAMA, KI
    TAKEDA, M
    MONDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (04): : 1412 - 1424
  • [39] NON-ABELIAN GAUGE FIELDS - LORENTZ GAUGE FORMULATION
    SCHWINGER, J
    PHYSICAL REVIEW, 1963, 130 (01): : 402 - &
  • [40] A review of non-commutative gauge theories
    Deshpande, NG
    PRAMANA-JOURNAL OF PHYSICS, 2003, 60 (02): : 189 - 198