Casoratian identities for the discrete orthogonal polynomials in discrete quantum mechanics with real shifts

被引:3
|
作者
Odake, Satoru [1 ]
机构
[1] Shinshu Univ, Fac Sci, Matsumoto, Nagano 3908621, Japan
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2017年 / 2017卷 / 12期
关键词
CRUMS THEOREM; MEIXNER;
D O I
10.1093/ptep/ptx165
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In our previous papers [S. Odake and R. Sasaki, J. Phys. A 46, 245201 (2013) and S. Odake and R. Sasaki, J. Approx. Theory 193, 184 (2015)], the Wronskian identities for the Hermite, Laguerre, and Jacobi polynomials and the Casoratian identities for the Askey-Wilson polynomial and its reduced-form polynomials were presented. These identities are naturally derived through quantum-mechanical formulation of the classical orthogonal polynomials: ordinary quantum mechanics for the former and discrete quantum mechanics with pure imaginary shifts for the latter. In this paper we present the corresponding identities for the discrete quantum mechanics with real shifts. Infinitely many Casoratian identities for the q-Racah polynomial and its reduced-form polynomials are obtained.
引用
收藏
页数:30
相关论文
共 50 条