On the critical set for discrete Laplacian parabolic equations with polynominal-type reactions

被引:0
|
作者
Chung, Soon-Yeong [1 ,2 ]
Choi, Min-Jun [3 ]
Hwang, Jaeho [2 ,4 ]
机构
[1] Natl Inst Math Sci, Daejeon, South Korea
[2] Sogang Univ, Dept Math, Seoul 04107, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[4] Sogang Univ, Res Inst Basic Sci, Seoul 04107, South Korea
关键词
Parabolic equation; discrete Laplacian; polynomial; Fujita-type blow-up; critical set; BLOW-UP; DIFFUSION-EQUATIONS; CRITICAL EXPONENT;
D O I
10.1080/10236198.2020.1790538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study long-time behaviours of solutions to the discrete reaction-diffusion equations u(t) = Delta(omega)u + psi(t)f(u) with nontrivial and nonnegative initial data, under the mixed boundary conditions. In particular, the function f satisfies alpha (u(q) + u(p)) <= f(u) <= beta (u(q) + u(p)) for some constants 0 < alpha <= beta and positive real numbers p and q. The purpose of this paper is to introduce a critical set Lambda(psi) depending on the nonnegative continuous function psi. Also, we discuss about Fujita-type blow-up, which depends on the critical set Lambda(psi).
引用
收藏
页码:779 / 801
页数:23
相关论文
共 47 条
  • [31] On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities
    Areej Bin Sultan
    Mohamed Jleli
    Bessem Samet
    Calogero Vetro
    Boundary Value Problems, 2022
  • [32] On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities
    Bin Sultan, Areej
    Jleli, Mohamed
    Samet, Bessem
    Vetro, Calogero
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [33] Ground states for quasilinear equations of N-Laplacian type with critical exponential growth and lack of compactness
    Chen, Sitong
    Qin, Dongdong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    SCIENCE CHINA-MATHEMATICS, 2024,
  • [34] Sign-changing solutions for p-Laplacian Kirchhoff-type equations with critical exponent
    Chahma, Youssouf
    Chen, Haibo
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 1291 - 1317
  • [35] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p-Laplacian
    Binlin, Zhang
    Fiscella, Alessio
    Liang, Sihua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 63 - 80
  • [36] Normalized solutions for nonlinear Kirchhoff type equations with low-order fractional Laplacian and critical exponent
    Kong, Lingzheng
    Zhu, Liyan
    Deng, Youjun
    APPLIED MATHEMATICS LETTERS, 2024, 147
  • [37] Sign-changing solutions for p-Laplacian Kirchhoff-type equations with critical exponent
    Youssouf Chahma
    Haibo Chen
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 1291 - 1317
  • [38] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Li, Anran
    Fan, Dandan
    Wei, Chongqing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [39] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Anran Li
    Dandan Fan
    Chongqing Wei
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [40] Acomplete characterization of Fujita's blow-up solutions for discrete p-Laplacian parabolic equations under the mixed boundary conditions on networks
    Chung, Soon-Yeong
    Hwang, Jaeho
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (01)