One-step generation of error-prone PCR libraries using Gateway® technology

被引:14
|
作者
Gruet, Antoine [1 ,2 ]
Longhi, Sonia [1 ,2 ]
Bignon, Christophe [1 ,2 ]
机构
[1] AFMB, UMR 7257, CNRS, Marseille 13288 9, France
[2] Aix Marseille Univ, Marseille 13288 9, France
关键词
Cloning; Sub-cloning; Gateway (R); Directed evolution; GFP; Error-prone PCR; epPCR; Library; Screening; C-TERMINAL DOMAIN; MEASLES-VIRUS NUCLEOPROTEIN; PROTEIN-PROTEIN INTERACTIONS; PHOSPHOPROTEIN; EXPRESSION; BINDING; SOLUBILITY; CLONING; GENES;
D O I
10.1186/1475-2859-11-14
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Error-prone PCR (epPCR) libraries are one of the tools used in directed evolution. The Gateway (R) technology allows constructing epPCR libraries virtually devoid of any background (i.e., of insert-free plasmid), but requires two steps: the BP and the LR reactions and the associated E. coli cell transformations and plasmid purifications. Results: We describe a method for making epPCR libraries in Gateway (R) plasmids using an LR reaction without intermediate BP reaction. We also describe a BP-free and LR-free sub-cloning method for in-frame transferring the coding sequence of selected clones from the plasmid used to screen the library to another one devoid of tag used for screening (such as the green fluorescent protein). We report preliminary results of a directed evolution program using this method. Conclusions: The one-step method enables producing epPCR libraries of as high complexity and quality as does the regular, two-step, protocol for half the amount of work. In addition, it contributes to preserve the original complexity of the epPCR product.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modification of fatty acid selectivity of Candida antarctica lipase A by error-prone PCR
    Dagmara Głód
    Biotechnology Letters, 2017, 39 : 767 - 773
  • [22] Modification of fatty acid selectivity of Candida antarctica lipase A by error-prone PCR
    Glod, Dagmara
    BIOTECHNOLOGY LETTERS, 2017, 39 (05) : 767 - 773
  • [23] Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR
    Simons, Jan Fredrik
    Lim, Yoong Wearn
    Carter, Kyle P.
    Wagner, Ellen K.
    Wayham, Nicholas
    Adler, Adam S.
    Johnson, David S.
    MABS, 2020, 12 (01)
  • [24] Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR
    Dumas, Louis
    Zito, Francesca
    Auroy, Pascaline
    Johnson, Xenie
    Peltier, Gilles
    Alric, Jean
    PLANT PHYSIOLOGY, 2018, 177 (02) : 465 - 475
  • [25] Engineering of Bacillus amyloliquefaciens α-Amylase for Improved Catalytic Efficiency by Error-Prone PCR
    Yuan, Susu
    Li, Renkuan
    Lin, Biyu
    Yan, Renxiang
    Ye, Xiuyun
    STARCH-STARKE, 2023, 75 (11-12):
  • [26] Enhancement of thermostability of Bacillus subtilis endoglucanase by error-prone PCR and DNA shuffling
    Yang, Mi-Jeong
    Lee, Hyun Woo
    Kim, Hoon
    APPLIED BIOLOGICAL CHEMISTRY, 2017, 60 (01) : 73 - 78
  • [27] Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability
    Stephens, Dawn Elizabeth
    Singh, Suren
    Permaul, Kugen
    FEMS MICROBIOLOGY LETTERS, 2009, 293 (01) : 42 - 47
  • [28] Improvement of the acid stability of Bacillus licheniformis alpha amylase by error-prone PCR
    Liu, Y. H.
    Hu, B.
    Xu, Y. J.
    Bo, J. X.
    Fan, S.
    Wang, J. L.
    Lu, F. P.
    JOURNAL OF APPLIED MICROBIOLOGY, 2012, 113 (03) : 541 - 549
  • [29] Random Mutagenesis by Insertion of Error-Prone PCR Products to the Chromosome of Bacillus subtilis
    Ye, Bin
    Li, Yu
    Tao, Qing
    Yao, Xiaoliang
    Cheng, Minggen
    Yan, Xin
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [30] Enhancement of thermostability of Bacillus subtilis endoglucanase by error-prone PCR and DNA shuffling
    Mi-Jeong Yang
    Hyun Woo Lee
    Hoon Kim
    Applied Biological Chemistry, 2017, 60 : 73 - 78