Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system

被引:31
|
作者
Guo, Huan [1 ]
Xu, Yujie [1 ]
Chen, Haisheng [1 ]
Zhang, Xinjing [1 ]
Qin, Wei [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, 11 North Fourth Ring Rd West, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Corresponding-point methodology; Physical energy storage; Compressed air energy storage system; System optimization; THERMODYNAMIC ANALYSIS; EFFICIENCY ANALYSIS; ADIABATIC CAES; PLANT; TECHNOLOGIES; OPTIMIZATION; EXERGY;
D O I
10.1016/j.energy.2017.10.132
中图分类号
O414.1 [热力学];
学科分类号
摘要
In traditional thermodynamic analysis methods, the strong physical relationship between energy charge and discharge processes is usually underestimated, as well as being weak in exploring the energy transfer mechanism of physical energy storage (PES) systems. Aiming at this problem, a new method, corresponding-point methodology (CPM), for analyzing and optimizing PES systems is proposed on the basis of the correspondence of the system flow, and its application to compressed air energy storage (CAES) system is conducted in this paper. Meanwhile, a diagram of thermal exergy and mechanical exergy (E-th-E-mech diagram), which reflects not only energy loss but also the quantity of stored energy, is proposed in a complex plane. This method, along with E-th-E-mech diagram, focuses on analyzing the corresponding processes rather than the single process of the CAES. Some indicators of corresponding point separation, corresponding quotient, intersection angle and optimum object, are proposed, thereby making the analysis and optimization of the CAES system more efficient and explicit. For two typical corresponding processes, the relationship of thermal and mechanical exergy variations is revealed. Finally, CPM is used to analyze a supercritical compressed air energy storage system, and the system efficiency is improved by 9.2% points after CPM analysis and optimization. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:772 / 784
页数:13
相关论文
共 50 条
  • [41] A trigeneration system based on compressed air and thermal energy storage
    Li, Yongliang
    Wang, Xiang
    Li, Dacheng
    Ding, Yulong
    APPLIED ENERGY, 2012, 99 : 316 - 323
  • [42] Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy
    Chen, Xiaotao
    Xue, Xiaodai
    Si, Yang
    Liu, Chengkui
    Chen, Laijun
    Guo, Yongqing
    Mei, Shengwei
    ENTROPY, 2020, 22 (07)
  • [43] PERFORMANCE OF A WATER COMPENSATED COMPRESSED AIR ENERGY STORAGE SYSTEM
    Arnulfi, Gianmario L.
    Marini, Martino
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 2, 2008, : 577 - 587
  • [44] Simulation Research on Parameters of Compressed Air Energy Storage System
    Liu, Yanchi
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1014 - 1016
  • [45] Conceptual Design of Ocean Compressed Air Energy Storage System
    Lim, Saniel D.
    Mazzoleni, Andre P.
    Park, Joong-kyoo
    Ro, Paul I.
    Quinlan, Brendan
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2013, 47 (02) : 70 - 81
  • [46] Advanced Exergy Analysis of Adiabatic Underwater Compressed Air Energy Storage System
    Szablowski, Lukasz
    Morosuk, Tatiana
    ENTROPY, 2023, 25 (01)
  • [47] Analysis of compression/expansion stage on compressed air energy storage cogeneration system
    An, Dou
    Li, Yuquan
    Lin, Xixiang
    Teng, Shiyang
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [48] Analysis and Optimization of a Compressed Air Energy Storage-Combined Cycle System
    Liu, Wenyi
    Liu, Linzhi
    Zhou, Luyao
    Huang, Jian
    Zhang, Yuwen
    Xu, Gang
    Yang, Yongping
    ENTROPY, 2014, 16 (06) : 3103 - 3120
  • [49] Analysis and feasibility of a compressed air energy storage system (CAES) enriched with ethanol
    Filho, Geraldo Lucio Tiago
    Vela, German Andres Lozano
    da Silva, Luciano Jose
    Perazzini, Maisa Tonon Bitti
    dos Santos, Estefania Fernandes
    Febba, Davi
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [50] Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection
    Gao, Ziyu
    Zhang, Xinjing
    Li, Xiaoyu
    Xu, Yujie
    Chen, Haisheng
    ENERGY, 2023, 284