USING AUTOENCODERS FOR FEATURE ENHANCEMENT IN MOTOR IMAGERY BRAIN-COMPUTER INTERFACES

被引:4
|
作者
Helal, Mahmoud A. [1 ]
Eldawlatly, Seif [1 ]
Taher, Mohamed [1 ]
机构
[1] Ain Shams Univ, Fac Engn, Comp & Syst Engn Dept, 1 El Sarayat St, Cairo, Egypt
关键词
Neural Rehabilitation; Pattern Recognition and Soft Computing Techniques; Brain-Computer Interface; CLASSIFICATION;
D O I
10.2316/P.2017.852-052
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery is currently one of the main applications of Brain-Computer Interface (BCI) which aims at providing the disabled with means to execute motor commands. One of the major stages of motor imagery systems is reducing the dimensions of the input data and enhancing the features prior to applying a classification stage to recognize the intended movement. In this paper, we utilize autoencoders as a powerful tool to enhance the input features of the band power filtered electroencephalography (EEG) data. We compare the performance of the auto encoder-based approach to using Principal Component Analysis (PCA). Our results demonstrate that using auto encoders with non-linear activation function achieves better performance compared to using PCA. We demonstrate the effects of varying the number of hidden nodes of the autoencoder as well as the activation function on the performance. We finally examine the characteristics of the trained autoencoders to identify the features that are most relevant for the motor imagery classification task.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 50 条
  • [21] The use of EEG modifications due to motor imagery for brain-computer interfaces
    Cincotti, F
    Mattia, D
    Babiloni, C
    Carducci, F
    Salinari, S
    Bianchi, L
    Marciani, MG
    Babiloni, F
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) : 131 - 133
  • [22] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [23] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [24] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [25] Motor task-to-task transfer learning for motor imagery brain-computer interfaces
    Gwon, Daeun
    Ahn, Minkyu
    NEUROIMAGE, 2024, 302
  • [26] Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits
    Maria Alonso-Valerdi, Luz
    Antonio Salido-Ruiz, Ricardo
    Ramirez-Mendoza, Ricardo A.
    NEUROPSYCHOLOGIA, 2015, 79 : 354 - 363
  • [27] Genetic Programming for Feature Extraction in Motor Imagery Brain-Computer Interface
    de Souza, Gabriel Henrique
    Bernardino, Heder Soares
    Vieira, Alex Borges
    Correa Barbosa, Helio Jose
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021), 2021, 12981 : 227 - 238
  • [28] Feature Selection for Brain-Computer Interfaces
    Koprinska, Irena
    NEW FRONTIERS IN APPLIED DATA MINING, 2010, 5669 : 106 - 117
  • [29] Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment
    Skola, Filip
    Tinkova, Simona
    Liarokapis, Fotis
    FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 13
  • [30] EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
    Padfield, Natasha
    Zabalza, Jaime
    Zhao, Huimin
    Masero, Valentin
    Ren, Jinchang
    SENSORS, 2019, 19 (06)