Asymptotically optimal shrinkage estimates for non-normal data

被引:1
|
作者
Withers, Christopher S. [2 ]
Nadarajah, Saralees [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
关键词
multiple shrinkage estimates; Stein estimate; JAMES-STEIN ESTIMATOR;
D O I
10.1080/00949655.2010.515592
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Motivated by several practical issues, we consider the problem of estimating the mean of a p-variate population (not necessarily normal) with unknown finite covariance. A quadratic loss function is used. We give a number of estimators (for the mean) with their loss functions admitting expansions to the order of p(-1/2) as p -> infinity. These estimators contain Stein's [Inadmissibility of the usual estimator for the mean of a multivariate normal population, in Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability, Vol. 1, J. Neyman, ed., University of California Press, Berkeley, 1956, pp. 197-206] estimate as a particular case and also contain 'multiple shrinkage' estimates improving on Stein's estimate. Finally, we perform a simulation study to compare the different estimates.
引用
收藏
页码:2021 / 2037
页数:17
相关论文
共 50 条
  • [41] NON-NORMAL NUMBERS
    ODLYZKO, A
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 141 - 142
  • [42] NON-NORMAL PULSATION
    Yecko, P.
    Pohlmeyer, J.
    NONLINEAR PULSATIONS AND HYDRODYNAMICS OF CEPHEIDS, 2009, 38 : 25 - 32
  • [43] Optimal centering and tolerance synthesis for non-independent and non-normal variables
    Gonzalez, Isabel
    Sanchez, Ismael
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 79 (5-8): : 1171 - 1184
  • [44] Optimal centering and tolerance synthesis for non-independent and non-normal variables
    Isabel González
    Ismael Sánchez
    The International Journal of Advanced Manufacturing Technology, 2015, 79 : 1171 - 1184
  • [45] Non-parametric stability measures for analysing non-normal data
    Paul, A. K.
    Paul, Ranjit Kumar
    Das, Samarendra
    Behera, S. K.
    Dhandapani, A.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2015, 85 (08): : 1097 - 1101
  • [46] ASYMPTOTICALLY OPTIMAL SEQUENTIAL BAYES ESTIMATES
    BICKEL, P
    YAHAV, J
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (02): : 550 - +
  • [47] ASYMPTOTICALLY OPTIMAL BALLOON DENSITY ESTIMATES
    HALL, P
    HUBER, C
    OWEN, A
    COVENTRY, A
    JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 51 (02) : 352 - 371
  • [48] ADMISSIBLE REPRESENTATION OF ASYMPTOTICALLY OPTIMAL ESTIMATES
    STRASSER, H
    ANNALS OF STATISTICS, 1978, 6 (04): : 867 - 881
  • [49] On asymptotically optimal estimates for general observations
    Vajda, I
    Janzura, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (01) : 27 - 45
  • [50] ON REGULAR BEST ASYMPTOTICALLY NORMAL ESTIMATES
    CHIANG, CL
    ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (02): : 336 - 351