Analysis and modelling of momentum transport based on NBI modulation experiments at ASDEX Upgrade

被引:9
|
作者
Zimmermann, C. F. B. [1 ,2 ]
McDermott, R. M. [1 ]
Fable, E. [1 ]
Angioni, C. [1 ]
Duval, B. P. [4 ]
Dux, R. [1 ]
Salmi, A. [3 ]
Stroth, U. [1 ,2 ]
Tala, T. [3 ]
Tardini, G. [1 ]
Puetterich, T. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Tech Univ Munich, Phys Dept E28, D-85747 Garching, Germany
[3] VTT, POB 1000, FI-02044 Espoo, Finland
[4] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
momentum transport; modulation experiment; intrinsic torque; plasma rotation; residual stress; intrinsic rotation; ASDEX Upgrade; ELECTRON HEAT-TRANSPORT; PARTICLE-TRANSPORT; TOROIDAL ROTATION; PLASMA; CONFINEMENT; SHEAR; COEFFICIENTS; SUPPRESSION; DISCHARGES; TURBULENCE;
D O I
10.1088/1361-6587/ac5ae8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The prediction of plasma rotation is of high interest for fusion research due to the effects of the rotation upon magnetohydrodynamic (MHD) instabilities, impurities, and turbulent transport in general. In this work, an analysis method was studied and validated to reliably extract momentum transport coefficients from neutral beam injection (NBI) modulation experiments. To this end, a set of discharges was created with similar background profiles for the ion and electron temperatures, the heat fluxes, the electron density, and the plasma rotation that, therefore, should exhibit similar momentum transport coefficients. In these discharges, a range of temporal perturbations were imposed by modulating and varying the power deposition of the NBI, electron-cyclotron-resonance heating (ECRH), and ion-cyclotron-resonance heating (ICRH). The transport model including diffusion, convection, and residual stress was implemented within the ASTRA code. The Prandtl number Pr = chi(phi)/chi(i) was assessed via the GKW code. A convective Coriolis pinch was fitted and the intrinsic torque from the residual stress was estimated. The obtained transport coefficients agree within error bars for sufficiently small imposed temperature perturbations, as would be expected, from the similar background profiles. This successful validation of the methodology opens the door to study the parametric dependence of the diffusive and convective momentum transport of the main ions of the plasma as well as the turbulent intrinsic torque in a future work.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experiments and modelling on ASDEX Upgrade and WEST in support of tool development for tokamak reactor armour melting assessments
    Ratynskaia, S.
    Paschalidis, K.
    Tolias, P.
    Krieger, K.
    Corre, Y.
    Balden, M.
    Faitsch, M.
    Grosjean, A.
    Tichit, Q.
    Pitts, R. A.
    NUCLEAR MATERIALS AND ENERGY, 2022, 33
  • [22] Analysis of high frequency Alfven eigenmodes observed in ASDEX Upgrade plasmas in the presence of RF-accelerated NBI ions
    Ochoukov, R.
    Sipila, S.
    Bilato, R.
    Bobkov, V.
    Dreval, M.
    Weiland, M.
    Dendy, R.
    Faugel, H.
    Johnson, T.
    Kappatou, A.
    Kazakov, Y.
    McClements, K. G.
    Moseev, D.
    Salewski, M.
    Schneider, P.
    NUCLEAR FUSION, 2023, 63 (04)
  • [23] Validation of low-Z impurity transport theory using boron perturbation experiments at ASDEX upgrade
    McDermott, R. M.
    Angioni, C.
    Cavedon, M.
    Kappatou, A.
    Dux, R.
    Fischer, R.
    Manas, P.
    NUCLEAR FUSION, 2022, 62 (02)
  • [24] Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments
    Fable, E.
    Pautasso, G.
    Lehnen, M.
    Dux, R.
    Bernert, M.
    Mlynek, A.
    NUCLEAR FUSION, 2016, 56 (02)
  • [25] Flux-driven integrated modelling of main ion pressure and trace tungsten transport in ASDEX Upgrade
    Linder, O.
    Citrin, J.
    Hogeweij, G. M. D.
    Angioni, C.
    Bourdelle, C.
    Casson, F. J.
    Fable, E.
    Ho, A.
    Koechl, F.
    Sertoli, M.
    NUCLEAR FUSION, 2019, 59 (01)
  • [26] Analysis and modelling of power modulation experiments in JET plasmas with internal transport barriers
    Marinoni, A.
    Mantica, P.
    Van Eester, D.
    Imbeaux, F.
    Mantsinen, M.
    Hawkes, N.
    Joffrin, E.
    Kiptily, V.
    Pinches, S. D.
    Salmi, A.
    Sharapov, S.
    Voitsekhovitch, I.
    de Vries, P.
    Zastrow, K. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (10) : 1469 - 1487
  • [27] Core transport analysis of nitrogen seeded H-mode discharges in the ASDEX Upgrade
    Tardini, G.
    Fischer, R.
    Jenko, F.
    Kallenbach, A.
    McDermott, R. M.
    Puetterich, T.
    Rathgeber, S. K.
    Schneller, M.
    Schweinzer, J.
    Sips, A. C. C.
    Told, D.
    Wolfrum, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (01)
  • [28] Full-radius integrated modelling of ASDEX Upgrade L-modes including impurity transport and radiation
    Fajardo, D.
    Angioni, C.
    Dux, R.
    Fable, E.
    Plank, U.
    Samoylov, O.
    Tardini, G.
    NUCLEAR FUSION, 2024, 64 (04)
  • [29] Edge transport and fuelling studies via gas puff modulation in ASDEX Upgrade L-mode plasmas
    Schuster, C. U.
    Wolfrum, E.
    Fable, E.
    Fischer, R.
    Griener, M.
    Tal, B.
    Angioni, C.
    Eich, T.
    Manz, P.
    Stroth, U.
    NUCLEAR FUSION, 2022, 62 (06)
  • [30] Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade
    Rathgeber, S. K.
    Barrera, L.
    Eich, T.
    Fischer, R.
    Nold, B.
    Suttrop, W.
    Willensdorfer, M.
    Wolfrum, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (02)