Bio-inspired Boosting for Moving Objects Segmentation

被引:2
|
作者
Martins, Isabel [1 ,2 ]
Carvalho, Pedro [2 ,3 ]
Corte-Real, Luis [3 ,4 ]
Luis Alba-Castro, Jose [1 ]
机构
[1] Univ Vigo, Vigo, Spain
[2] Polytech Inst Porto, Sch Engn, Oporto, Portugal
[3] INESC TEC, Oporto, Portugal
[4] Univ Porto, Fac Engn, Oporto, Portugal
关键词
Bio-inspired motion detection; Video segmentation;
D O I
10.1007/978-3-319-41501-7_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing robust and universal methods for unsupervised segmentation of moving objects in video sequences has proved to be a hard and challenging task. State-of-the-art methods show good performance in a wide range of situations, but systematically fail when facing more challenging scenarios. Lately, a number of image processing modules inspired in biological models of the human visual system have been explored in different areas of application. This paper proposes a bio-inspired boosting method to address the problem of unsupervised segmentation of moving objects in video that shows the ability to overcome some of the limitations of widely used state-of-the-art methods. An exhaustive set of experiments was conducted and a detailed analysis of the results, using different metrics, revealed that this boosting is more significant when challenging scenarios are faced and state-of-the-art methods tend to fail.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [21] Bio-Inspired Video Enhancement for Small Moving Target Detection
    Uzair, Muhammad
    Brinkworth, Russell S. A.
    Finn, Anthony
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1232 - 1244
  • [22] Acceleration of Moving Object Detection in Bio-Inspired Computer Vision
    Sanchez, Jose L.
    Viana, Raul
    Lopez, Maria T.
    Fernandez-Caballero, Antonio
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 364 - 373
  • [23] Optimal Segmentation of Brain MRI using Bio-inspired Approaches
    Liu, Yang
    Tian, L. W.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2019, 81 (01) : S17 - S18
  • [24] Bio-inspired optimisation algorithms in medical image segmentation: a review
    Zhang, Tian
    Zhou, Ping
    Zhang, Shenghan
    Cheng, Shi
    Ma, Lianbo
    Jiang, Huiyan
    Yao, Yu-Dong
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2024, 24 (02) : 65 - 79
  • [25] Bio-inspired Bio-inspired computer vision based on neural networks
    Antón-Rodríguez M.
    González-Ortega D.
    Díaz-Pernas F.J.
    Martínez-Zarzuela M.
    de la Torre-Díez I.
    Boto-Giralda D.
    Díez-Higuera J.F.
    Pattern Recognition and Image Analysis, 2011, 21 (2) : 108 - 112
  • [26] Bio-inspired microrobots
    Qiu, Famin
    Zhang, Li
    Tottori, Soichiro
    Marquardt, Klaus
    Krawczyk, Krzysztof
    Franco-Obregon, Alfredo
    Nelson, Bradley J.
    MATERIALS TODAY, 2012, 15 (10) : 463 - 463
  • [27] Bio-inspired optics
    Scribner, DA
    Buckley, LJ
    Satyshur, M
    Sands, R
    Zuccarello, G
    INFRARED TECHNOLOLGY AND APPLICATIONS XXIX, 2003, 5074 : 312 - 317
  • [28] ARTIFICIAL VISION FOR THE BLIND: A BIO-INSPIRED ALGORITHM FOR OBJECTS AND OBSTACLES DETECTION
    Dramas, Florian
    Thorpe, Simon J.
    Jouffrais, Christophe
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2010, 10 (04) : 531 - 544
  • [29] Bio-inspired adhesion
    Ghatak, Animangsu
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2014, 28 (3-4) : 225 - 225
  • [30] Bio-Inspired Networking
    Dressler, Falko
    Suda, Tatsuya
    Carreras, Iacopo
    Murata, Masayuki
    Crowcroft, Jon
    Karlsson, Gunnar
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2010, 28 (04) : 521 - 523