Multi-view Clustering via Late Fusion Alignment Maximization

被引:0
|
作者
Wang, Siwei [1 ]
Liu, Xinwang [1 ]
Zhu, En [1 ]
Tang, Chang [2 ]
Liu, Jiyuan [1 ]
Hu, Jingtao [1 ]
Xia, Jingyuan [3 ]
Yin, Jianping [4 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[3] Imperial Coll London, Dept Elect & Elect Engn, London, England
[4] Dongguan Univ Technol, Sch Cyberspace Sci, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance. Although demonstrating promising performance in many applications, we observe that most of existing methods directly combine multiple views to learn an optimal similarity for clustering. These methods would cause intensive computational complexity and over-complicated optimization. In this paper, we theoretically uncover the connection between existing k-means clustering and the alignment between base partitions and consensus partition. Based on this observation, we propose a simple but effective multi-view algorithm termed Multi-view Clustering via Late Fusion Alignment Maximization (MVC-LFA). In specific, MVC-LFA proposes to maximally align the consensus partition with the weighted base partitions. Such a criterion is beneficial to significantly reduce the computational complexity and simplify the optimization procedure. Furthermore, we design a three-step iterative algorithm to solve the new resultant optimization problem with theoretically guaranteed convergence. Extensive experiments on five multi-view benchmark datasets demonstrate the effectiveness and efficiency of the proposed MVC-LFA.
引用
收藏
页码:3778 / 3784
页数:7
相关论文
共 50 条
  • [21] Multi-view spectral clustering via common structure maximization of local and global representations
    Hao, Wenyu
    Pang, Shanmin
    Chen, Zhikai
    NEURAL NETWORKS, 2021, 143 : 595 - 606
  • [22] View-interactive attention information alignment-guided fusion for incomplete multi-view clustering
    Shu, Zhenqiu
    Luo, Yunwei
    Huang, Yuxin
    Mao, Cunli
    Yu, Zhengtao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [23] Scalable Incomplete Multi-View Clustering with Structure Alignment
    Wen, Yi
    Wang, Siwei
    Liang, Ke
    Liang, Weixuan
    Wan, Xinhang
    Liu, Xinwang
    Liu, Suyuan
    Liu, Jiyuan
    Zhu, En
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3031 - 3040
  • [24] Deep Incomplete Multi-view Clustering via Multi-level Imputation and Contrastive Alignment
    Wang, Ziyu
    Du, Yiming
    Wang, Yao
    Ning, Rui
    Li, Lusi
    NEURAL NETWORKS, 2025, 181
  • [25] Multi-view clustering via high-order bipartite graph fusion
    Zhao, Zihua
    Wang, Ting
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    INFORMATION FUSION, 2025, 113
  • [26] Multi-View Data Fusion Oriented Clustering via Nuclear Norm Minimization
    Huang, Aiping
    Zhao, Tiesong
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9600 - 9613
  • [27] Robust multi-view clustering via inter-and-intra-view low rank fusion
    Liang, Yuchen
    Pan, Yan
    Lai, Hanjiang
    Yin, Jian
    NEUROCOMPUTING, 2020, 385 : 220 - 230
  • [28] Efficient Anchor Learning-based Multi-view Clustering - A Late Fusion Approach
    Zhang, Tiejian
    Liu, Xinwang
    Zhu, En
    Zhou, Sihang
    Dong, Zhibin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3685 - 3693
  • [29] Multi-graph fusion for multi-view spectral clustering
    Kang, Zhao
    Shi, Guoxin
    Huang, Shudong
    Chen, Wenyu
    Pu, Xiaorong
    Zhou, Joey Tianyi
    Xu, Zenglin
    KNOWLEDGE-BASED SYSTEMS, 2020, 189
  • [30] Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization
    Zhang, Tiejian
    Liu, Xinwang
    Gong, Lei
    Wang, Siwei
    Niu, Xin
    Shen, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 993 - 1007