Multi-view Clustering via Late Fusion Alignment Maximization

被引:0
|
作者
Wang, Siwei [1 ]
Liu, Xinwang [1 ]
Zhu, En [1 ]
Tang, Chang [2 ]
Liu, Jiyuan [1 ]
Hu, Jingtao [1 ]
Xia, Jingyuan [3 ]
Yin, Jianping [4 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[3] Imperial Coll London, Dept Elect & Elect Engn, London, England
[4] Dongguan Univ Technol, Sch Cyberspace Sci, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance. Although demonstrating promising performance in many applications, we observe that most of existing methods directly combine multiple views to learn an optimal similarity for clustering. These methods would cause intensive computational complexity and over-complicated optimization. In this paper, we theoretically uncover the connection between existing k-means clustering and the alignment between base partitions and consensus partition. Based on this observation, we propose a simple but effective multi-view algorithm termed Multi-view Clustering via Late Fusion Alignment Maximization (MVC-LFA). In specific, MVC-LFA proposes to maximally align the consensus partition with the weighted base partitions. Such a criterion is beneficial to significantly reduce the computational complexity and simplify the optimization procedure. Furthermore, we design a three-step iterative algorithm to solve the new resultant optimization problem with theoretically guaranteed convergence. Extensive experiments on five multi-view benchmark datasets demonstrate the effectiveness and efficiency of the proposed MVC-LFA.
引用
收藏
页码:3778 / 3784
页数:7
相关论文
共 50 条
  • [1] Multi-view subspace clustering via adaptive graph learning and late fusion alignment
    Tang, Chuan
    Sun, Kun
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Huang, Jun-Jie
    Zhang, Wei
    NEURAL NETWORKS, 2023, 165 : 333 - 343
  • [2] Late Fusion Incomplete Multi-View Clustering
    Liu, Xinwang
    Zhu, Xinzhong
    Li, Miaomiao
    Wang, Lei
    Tang, Chang
    Yin, Jianping
    Shen, Dinggang
    Wang, Huaimin
    Gao, Wen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (10) : 2410 - 2423
  • [3] Multi-View Clustering via Triplex Information Maximization
    Zhang, Chaoyang
    Lou, Zhengzheng
    Zhou, Qinglei
    Hu, Shizhe
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4299 - 4313
  • [4] One Pass Late Fusion Multi-view Clustering
    Liu, Xinwang
    Liu, Li
    Liao, Qing
    Wang, Siwei
    Zhang, Yi
    Tu, Wenxuan
    Tang, Chang
    Liu, Jiyuan
    Zhu, En
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] One-Stage Incomplete Multi-view Clustering via Late Fusion
    Zhang, Yi
    Liu, Xinwang
    Wang, Siwei
    Liu, Jiyuan
    Dai, Sisi
    Zhu, En
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2717 - 2725
  • [6] Multi-view clustering via spectral embedding fusion
    Yin, Hongwei
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    SOFT COMPUTING, 2019, 23 (01) : 343 - 356
  • [7] Multi-view clustering via spectral embedding fusion
    Hongwei Yin
    Fanzhang Li
    Li Zhang
    Zhao Zhang
    Soft Computing, 2019, 23 : 343 - 356
  • [8] Multi-view subspace clustering via partition fusion
    Lv, Juncheng
    Kang, Zhao
    Wang, Boyu
    Ji, Luping
    Xu, Zenglin
    INFORMATION SCIENCES, 2021, 560 (560) : 410 - 423
  • [9] Partially multi-view clustering via re-alignment
    Yan, Wenbiao
    Zhu, Jihua
    Chen, Jinqian
    Cheng, Haozhe
    Bai, Shunshun
    Duan, Liang
    Zheng, Qinghai
    NEURAL NETWORKS, 2025, 182
  • [10] Information maximization clustering via multi-view self-labelling
    Ntelemis, Foivos
    Jin, Yaochu
    Thomas, Spencer A.
    KNOWLEDGE-BASED SYSTEMS, 2022, 250