Neuroevolutionary Feature Representations for Causal Inference

被引:11
|
作者
Burkhart, Michael C. [1 ]
Ruiz, Gabriel [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] UCLA, Los Angeles, CA USA
关键词
Causal inference; Heterogeneous treatment effects; Feature representations; Neuroevolutionary algorithms; Counterfactual inference; NETWORKS;
D O I
10.1007/978-3-031-08754-7_1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Within the field of causal inference, we consider the problem of estimating heterogeneous treatment effects from data. We propose and validate a novel approach for learning feature representations to aid the estimation of the conditional average treatment effect or CATE. Our method focuses on an intermediate layer in a neural network trained to predict the outcome from the features. In contrast to previous approaches that encourage the distribution of representations to be treatment-invariant, we leverage a genetic algorithm to optimize over representations useful for predicting the outcome to select those less useful for predicting the treatment. This allows us to retain information within the features useful for predicting outcome even if that information may be related to treatment assignment. We validate our method on synthetic examples and illustrate its use on a real life dataset.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [21] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [22] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [23] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [24] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213
  • [25] The Future of Causal Inference
    Mitra, Nandita
    Roy, Jason
    Small, Dylan
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2022, 191 (10) : 1671 - 1676
  • [26] An Introduction to Causal Inference
    Pearl, Judea
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [27] THE EROSION OF CAUSAL INFERENCE
    Weed, D. L.
    Alexander, D.
    Perez, V.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S187 - S187
  • [28] Indeterminism and causal inference
    Pedro, Inaki San
    Suarez, Mauricio
    TEOREMA, 2014, 33 (01): : 95 - 109
  • [29] Causal Inference in NARS
    Xu, Bowen
    Wang, Pei
    ARTIFICIAL GENERAL INTELLIGENCE, AGI 2024, 2024, 14951 : 199 - 209
  • [30] THE FOUNDATIONS OF CAUSAL INFERENCE
    Pearl, Judea
    SOCIOLOGICAL METHODOLOGY, VOL 40, 2010, 40 : 75 - 149