Distributed Optimal Power Flow with Data-Driven Sensitivity Computation

被引:0
|
作者
Sen Sarma, Debopama [1 ]
Cupelli, Lisette [2 ]
Ponci, Ferdinanda [3 ]
Monti, Antonello [3 ]
机构
[1] TU Dortmund, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
[2] Rolls Royce Power Syst, Friedrichshafen, Germany
[3] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
关键词
data driven; distributed optimal power flow; linear regression;
D O I
10.1109/PowerTech46648.2021.9494927
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On account of the increasing influx of distributed energy resources into modern power grids, it is essential to develop efficient distributed control and optimization algorithms capable of providing suitable solutions with access to local data alone. This paper uses a distributed optimal power flow (OPF) algorithm based on a gradient projection method, which applies to any arbitrary grid topology, to solve the OPF problem. A multi-variable linear regression method learns the network sensitivities with historical operational data. The use of a data-driven approach avoids the requirement of accurate information on line parameters and network topology. Additionally, introduced curtailment cost factors into the objective cost function encourage the usage of renewable power sources. In conclusion, we show that the solution achieved using data-driven sensitivities provides an average optimality gap of 1.8% to the centralized OPF solution with numerical test results on a modified IEEE 69 bus system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Explicit Data-Driven Small-Signal Stability Constrained Optimal Power Flow
    Liu, Juelin
    Yang, Zhifang
    Zhao, Junbo
    Yu, Juan
    Tan, Bendong
    Li, Wenyuan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) : 3726 - 3737
  • [22] A New Data-Driven Quasi-Monte Carlo for Probabilistic Optimal Power Flow
    Krishna, Attoti Bharath
    Abhyankar, Abhijit R.
    2022 22ND NATIONAL POWER SYSTEMS CONFERENCE, NPSC, 2022,
  • [23] Data-driven alternating current optimal power flow: A Lagrange multiplier based approach
    Lei, Xingyu
    Yu, Juan
    Aini, Habaer
    Wu, Wencui
    ENERGY REPORTS, 2022, 8 : 748 - 755
  • [24] Research on Data-Driven Optimal Scheduling of Power System
    Luo, Jianxun
    Zhang, Wei
    Wang, Hui
    Wei, Wenmiao
    He, Jinpeng
    ENERGIES, 2023, 16 (06)
  • [25] A Data-Driven Computation Method for the Gap Metric and the Optimal Stability Margin
    Koenings, Tim
    Krueger, Minjia
    Luo, Hao
    Ding, Steven X.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (03) : 805 - 810
  • [26] Data-Driven Multiperiod Optimal Power Flow for Power System Scheduling Considering Renewable Energy Integration
    Zafar, Rehman
    Chung, Il-Yop
    IEEE ACCESS, 2024, 12 : 95278 - 95290
  • [27] Distributed Data-Driven Power Iteration for Strongly Connected Networks
    Gusrialdi, Azwirman
    Qu, Zhihua
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 87 - 92
  • [28] A Review of Data-Driven Methods for Power Flow Analysis
    Akter, Mahmuda
    Nazaripouya, Hamidreza
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [29] Data-Driven Power Flow Linearization: A Regression Approach
    Liu, Yuxiao
    Zhang, Ning
    Wang, Yi
    Yang, Jingwei
    Kang, Chongqing
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (03) : 2569 - 2580
  • [30] Data-driven Optimization Approaches for Optimal Power Flow with Uncertain Reserves from Load Control
    Zhang, Yiling
    Shen, Siqian
    Mathieu, Johanna L.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3013 - 3018