A Pre-routing Net Wirelength Prediction Method Using an Optimized Convolutional Neural Network

被引:0
|
作者
Watanabe, Ryota [1 ]
Katsuda, Yuki [1 ]
Zhao, Qian [1 ]
Yoshida, Takaichi [1 ]
机构
[1] Kyushu Inst Technol, Iizuka, Fukuoka, Japan
关键词
FPGA; Placement; Deep Learning; CNN;
D O I
10.1109/CANDARW.2019.00028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The total wirelength of a circuit implementation is an important metric to evaluate the quality of an FPGA design flow. The wirelengths of all nets of a circuit are determined by routing, but pre-routing stages like placement can use a wirelength prediction model to direct the generation of a placement solution with a shorter total wirelength for routing. The conventional VPR employs a wirelength prediction model based on the bounding box size and the number of sinks of a net, which works well for an FPGA of a regular 2D array structure. However, new FPGA architectures like 3D-FPGA and hierarchical routing cannot use such a simple model. In this work, we propose a method to build an optimized net wirelength prediction model using a convolutional neural network, which can learn routing features from routed nets without manual tunings. The evaluation results show an optimized CNN model also has higher accuracy than the VPR model.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [41] CrackT-net: a method of convolutional neural network and transformer for crack segmentation
    Qu, Zhong
    Li, Yanxin
    Zhou, Qiang
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (02)
  • [42] CME Arrival Time Prediction Using Convolutional Neural Network
    Wang, Yimin
    Liu, Jiajia
    Jiang, Ye
    Erdelyi, Robert
    ASTROPHYSICAL JOURNAL, 2019, 881 (01):
  • [43] THE METHOD OF HYDRODYNAMIC MODELING USING A CONVOLUTIONAL NEURAL NETWORK
    Novotarskyi, M. A.
    Kuzmych, V. A.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2023, (04) : 58 - 68
  • [44] Pilling Grading Method using Convolutional Neural Network
    Honda M.
    Hirosawa S.
    Nishino S.
    Kuramoto K.
    Kitaguchi S.
    Sato T.
    Journal of the Japan Research Association for Textile End-Uses, 2020, 61 (10) : 730 - 737
  • [45] SPNet: Shape Prediction Using a Fully Convolutional Neural Network
    Al Arif, S. M. Masudur Rahman
    Knapp, Karen
    Slabaugh, Greg
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 430 - 439
  • [46] Brain Age Prediction Using a Lightweight Convolutional Neural Network
    Eltashani, Fatma
    Parreno-Centeno, Mario
    Cole, James H.
    Papa, Joao Paulo
    Costen, Fumie
    IEEE ACCESS, 2025, 13 : 6750 - 6763
  • [47] Future prediction of coastal recession using convolutional neural network
    Khan, Abdul Rehman
    Bin Ab Razak, Mohd Shahrizal
    Yusuf, Badronnisa Binti
    Shafri, Helmi Zulhaidi Bin Mohd
    Mohamad, Noorasiah Binti
    ESTUARINE COASTAL AND SHELF SCIENCE, 2024, 299
  • [48] Disruption prediction using a full convolutional neural network on EAST
    Guo, B. H.
    Shen, B.
    Chen, D. L.
    Rea, C.
    Granetz, R. S.
    Huang, Y.
    Zeng, L.
    Zhang, H.
    Qian, J. P.
    Sun, Y. W.
    Xiao, B. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (02)
  • [49] Prediction method of condition degradation for network-level bridges based on U-Net plus plus convolutional neural network
    Yang, Yuxing
    Xin, Jingzhou
    Tang, Qizhi
    Wang, Yu
    Yang, Simon X.
    Zhou, Jianting
    MEASUREMENT, 2025, 241
  • [50] A Convolutional Neural Network Based Ensemble Method for Cancer Prediction Using DNA Methylation Data
    Xia, Chao
    Xiao, Yawen
    Wu, Jun
    Zhao, Xiaodong
    Li, Hua
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 191 - 196