The Schur-Horn Convexity Theorem states that for a in R-n p({ U* diag(a) U: U is an element of U(n)}) = conv( G(n) a), where p denotes the projection on the diagonal. In this paper we generalize this result to the setting of arbitrary separable Hilbert spaces. it turns out that the theorem still holds, if we take the l(infinity)-closure on both sides. We will also give a description of the left-hand side for nondiagonalizable hermitian operators. In the last section we use this result to get an extension theorem for invariant closed convex subsets of the diagonal operators. (C) 1999 Academic Press.
机构:
Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Boscaggin, Alberto
Fonda, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trieste, Dipartimento Matemat & Geosci, Piazzale Europa 1, I-34127 Trieste, ItalyUniv Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Fonda, Alessandro
Garrione, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyUniv Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy