New simple correlation formula for the drag coefficient of non-spherical particles

被引:521
|
作者
Hoelzer, Andreas [1 ]
Sommerfeld, Martin [1 ]
机构
[1] Univ Halle Wittenberg, Inst Verfahrenstech, Fac Ingn, D-06099 Halle, Saale, Germany
关键词
drag coefficient; correlation; orientation; non-spherical particles;
D O I
10.1016/j.powtec.2007.08.021
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A simple correlation formula for the standard drag coefficient (i.e. a single stationary particle in a uniform flow) of arbitrary shaped particles is established using a large number of experimental data from the literature and a comprehensive numerical study [A. Holzer, M. Sommerfeld, IUTAM Symposium on Computational Approaches to Multiphase Flow, Springer, 2006]. This new correlation formula accounts for the particle orientation over the entire range of Reynolds numbers up to the critical Reynolds number. Such a correlation may be easily used in the frame of Lagrangian computations where also the particle orientation along the trajectory is computed. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [41] Prediction of Drag Coefficient Using Artificial Neural Network in a Non-spherical Particle System
    Yan, Sheng-Nan
    Tang, Tian-Qi
    Ren, An-Xing
    He, Yu-Rong
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2017, 38 (10): : 2171 - 2175
  • [42] A new model for settling velocity of non-spherical particles
    Fan Yang
    Yu-Hong Zeng
    Wen-Xin Huai
    Environmental Science and Pollution Research, 2021, 28 : 61636 - 61646
  • [43] Radiation drag in the field of a non-spherical source
    Bini, D.
    Geralico, A.
    Passamonti, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (01) : 65 - 74
  • [44] On the drag force on non-spherical dust grain
    Krasheninnikov, S. I.
    Mendis, D. A.
    JOURNAL OF PLASMA PHYSICS, 2011, 77 : 271 - 276
  • [45] Terminal velocity and drag coefficient for spherical particles
    Kalman, Haim
    Matana, Erez
    POWDER TECHNOLOGY, 2022, 396 : 181 - 190
  • [46] COMMENT ON DRAG COEFFICIENT OF SMALL SPHERICAL PARTICLES
    SCHUYLER, FL
    NICHOLLS, JA
    AIAA JOURNAL, 1969, 7 (03) : 573 - &
  • [47] Numerical prediction on the drag force and heat transfer of non-spherical particles in supercritical water
    Zhang, Hao
    Xiong, Bo
    An, Xizhong
    Ke, Chunhai
    Chen, Jiang
    POWDER TECHNOLOGY, 2020, 361 (361) : 414 - 423
  • [48] Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
    Hoelzer, Andreas
    Sornmerfeld, Martin
    COMPUTERS & FLUIDS, 2009, 38 (03) : 572 - 589
  • [49] On the drag of freely falling non-spherical particles (vol 30, pg 526, 2016)
    Bagheri, G.
    Bonadonna, C.
    POWDER TECHNOLOGY, 2019, 349 : 108 - 108
  • [50] CALCULATION OF TRANSPORT COEFFICIENT FOR GASES OF NON-SPHERICAL MOLECULAES USING CORRELATION FUNCTIONS
    JOHANSEN, H
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1969, 242 (5-6): : 363 - &