Global asymptotic stability for minimum-delay difference equations

被引:1
|
作者
Berenhaut, Kenneth S. [1 ]
Guy, Richard T. [1 ]
Barrett, Christa L. [1 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
关键词
difference equations; global asymptotic stability; symmetric functions; ratios; periodicity; recursive equation; PERIODICITY; CONVERGENCE;
D O I
10.1080/10236191003685924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers equations of the form yn = min{f(y(n-k1), y(n-m1)), ... , f(y(n-kL), y(n-mL))}. Conditions on f and {(k(i), m(i))} which guarantee global asymptotic stability of positive solutions are provided. The results generalize recent work in the literature for equations of the form yn = f(y(n-k1); y(n-m1)). Asymptotic periodicity for solutions is also considered.
引用
收藏
页码:1581 / 1590
页数:10
相关论文
共 50 条
  • [41] Improved global exponential stability for delay difference equations with impulses
    Wang, Jiayu
    Li, Xiaodi
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 1933 - 1938
  • [42] MINIMUM-DELAY SCHEDULES IN LAYERED NETWORKS
    BOVET, DP
    CRESCENZI, P
    ACTA INFORMATICA, 1991, 28 (05) : 453 - 461
  • [43] A simple approximation to minimum-delay routing
    Vutukury, S
    Garcia-Luna-Aceves, JJ
    ACM SIGCOMM'99 CONFERENCE: APPLICATIONS, TECHNOLOGIES, ARCHITECTURES, AND PROTOCOLS FOR COMPUTER COMMUNICATIONS, 1999, 29 (04): : 227 - 238
  • [44] ULTIMATE BOUNDS AND GLOBAL ASYMPTOTIC STABILITY FOR DIFFERENTIAL-DELAY EQUATIONS
    CAO, YL
    GARD, TC
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (01) : 119 - 131
  • [45] Complexity of minimum-delay gate resizing
    Chakraborty, S
    Murgai, R
    VLSI DESIGN 2001: FOURTEENTH INTERNATIONAL CONFERENCE ON VLSI DESIGN, 2001, : 425 - 430
  • [46] Global asymptotic stability of equilibrium point for a family of rational difference equations
    Wang, Chang-you
    Wang, Shu
    Wang, Wei
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 714 - 718
  • [47] A new algorithm for proving global asymptotic stability of rational difference equations
    Hogan, Emilie
    Zeilberger, Doron
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (11) : 1853 - 1873
  • [48] Global asymptotic stability for a higher order nonlinear rational difference equations
    Yan, Xing-Xue
    Li, Wan-Tong
    Zhao, Zhu
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1819 - 1831
  • [49] GLOBAL ASYMPTOTIC STABILITY OF A SECOND-ORDER SYSTEM OF DIFFERENCE EQUATIONS
    Tran Hong Thai
    Vu Van Khuong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (02): : 185 - 198
  • [50] On the Global Asymptotic Stability of a Second-Order System of Difference Equations
    Yalcinkaya, Ibrahim
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008