This paper considers equations of the form yn = min{f(y(n-k1), y(n-m1)), ... , f(y(n-kL), y(n-mL))}. Conditions on f and {(k(i), m(i))} which guarantee global asymptotic stability of positive solutions are provided. The results generalize recent work in the literature for equations of the form yn = f(y(n-k1); y(n-m1)). Asymptotic periodicity for solutions is also considered.
机构:
Sobolev Institute of Mathematics SB RAS, 4, pr. Akad. Koptyuga, Novosibirsk
Novosibirsk State University, 2, ul. Pirogova, NovosibirskSobolev Institute of Mathematics SB RAS, 4, pr. Akad. Koptyuga, Novosibirsk
Demidenko G.V.
Baldanov D.S.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State University, 2, ul. Pirogova, NovosibirskSobolev Institute of Mathematics SB RAS, 4, pr. Akad. Koptyuga, Novosibirsk
机构:
Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
Chongqing Jiaotong Univ, Sch Comp & Informat, Chongqing 400074, Peoples R ChinaChongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
Yang, Xiaofan
Tang, Yuan Yan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
Hong Kong Baptist Univ, Dept Comp Sci, Kowloon, Hong Kong, Peoples R ChinaChongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
Tang, Yuan Yan
Cao, Jianqiu
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Jiaotong Univ, Sch Comp & Informat, Chongqing 400074, Peoples R ChinaChongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China