ON ONE-DIMENSIONAL LEIBNIZ CENTRAL EXTENSIONS OF A FILIFORM LIE ALGEBRA

被引:21
|
作者
Rakhimov, Isamiddin S. [1 ,2 ]
Hassan, Munther A. [1 ]
机构
[1] Univ Putra Malaysia, Inst Math Res INSPEM, Serdang 43400, Selangor Darul, Malaysia
[2] Univ Putra Malaysia, Dept Math, FS, Serdang 43400, Selangor Darul, Malaysia
关键词
Lie algebra; filiform Leibniz algebra; isomorphism; invariant;
D O I
10.1017/S0004972711002371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the classification of Leibniz central extensions of a filiform Lie algebra. We choose a basis with respect to which the multiplication table has a simple form. In low-dimensional cases isomorphism classes of the central extensions are given. In the case of parametric families of orbits, invariant functions (orbit functions) are provided.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 50 条
  • [41] ONE-DIMENSIONAL CONFIGURATION SUMS IN VERTEX MODELS AND AFFINE LIE-ALGEBRA CHARACTERS
    DATE, E
    JIMBO, M
    KUNIBA, A
    MIWA, T
    OKADO, M
    LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (01) : 69 - 77
  • [42] Cohomology and deformations of the infinite-dimensional filiform Lie algebra m2
    Fialowski, Alice
    Wagemann, Friedrich
    JOURNAL OF ALGEBRA, 2008, 319 (12) : 5125 - 5143
  • [43] Central extensions of filiform associative algebras
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Ladra, Manuel
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (06): : 1083 - 1101
  • [44] Central extensions of filiform Zinbiel algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1479 - 1495
  • [45] Cohomology and deformations of the infinite-dimensional filiform Lie algebra m0
    Fialowski, Alice
    Wagemann, Friedrich
    JOURNAL OF ALGEBRA, 2007, 318 (02) : 1002 - 1026
  • [46] On -central extensions of Leibniz algebras
    Casas, J. M.
    Khmaladze, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 39 - 56
  • [47] LEIBNIZ SUPERALGEBRAS AND CENTRAL EXTENSIONS
    Liu, Dong
    Hu, Naihong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (06) : 765 - 780
  • [48] Central extensions of infinite-dimensional Lie groups
    Neeb, KH
    ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) : 1365 - +
  • [49] Solvable extensions of the naturally graded quasi-filiform Leibniz algebras
    Abdurasulov, K. K.
    Adashev, J. Q.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 510 - 527
  • [50] Solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length
    Abdurasulov, Kobiljon K.
    Adashev, Jobir Q.
    Casas, Jose M.
    Omirov, Bakhrom A.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1578 - 1594