ON ONE-DIMENSIONAL LEIBNIZ CENTRAL EXTENSIONS OF A FILIFORM LIE ALGEBRA

被引:21
|
作者
Rakhimov, Isamiddin S. [1 ,2 ]
Hassan, Munther A. [1 ]
机构
[1] Univ Putra Malaysia, Inst Math Res INSPEM, Serdang 43400, Selangor Darul, Malaysia
[2] Univ Putra Malaysia, Dept Math, FS, Serdang 43400, Selangor Darul, Malaysia
关键词
Lie algebra; filiform Leibniz algebra; isomorphism; invariant;
D O I
10.1017/S0004972711002371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the classification of Leibniz central extensions of a filiform Lie algebra. We choose a basis with respect to which the multiplication table has a simple form. In low-dimensional cases isomorphism classes of the central extensions are given. In the case of parametric families of orbits, invariant functions (orbit functions) are provided.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 50 条
  • [1] Residually solvable extensions of an infinite dimensional filiform Leibniz algebra
    Abdurasulov, K. K.
    Omirov, B. A.
    Rakhimov, I. S.
    Solijanova, G. O.
    JOURNAL OF ALGEBRA, 2021, 585 : 697 - 722
  • [2] Restricted one-dimensional central extensions of the restricted filiform Lie algebras m0λ(p)
    Evans, Tyler J.
    Fialowski, Alice
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 244 - 257
  • [3] Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras
    Adashev, J. K.
    Camacho, L. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2017, 479 : 461 - 486
  • [4] Restricted one-dimensional central extensions of restricted simple Lie algebras
    Evans, Tyler J.
    Fialowski, Alice
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 96 - 102
  • [5] Central extensions of 2-filiform Leibniz algebras
    Adashev, Jobir
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 1886 - 1899
  • [6] Leibniz central extensions of Lie superalgebras
    Wang, Yan
    Pei, Yufeng
    Deng, Shaoqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (08)
  • [7] Leibniz central extensions on some infinite-dimensional Lie algebras
    Liu, D
    Hu, NH
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2385 - 2405
  • [8] Combinatorial Structures Associated with Low Dimensional Second Class of non-Lie Filiform Leibniz Algebra
    Jamri, A. A. S. Ahmad
    Husain, Sh. K. Said
    Rakhimov, I. S.
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [9] Leibniz central extension on a block lie algebra
    Wang, Qing
    Tan, Shaobin
    ALGEBRA COLLOQUIUM, 2007, 14 (04) : 713 - 720
  • [10] Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 490 - 507